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This  paper  develops  methods for constructing  asymptotically  valid  confidence  intervals for 
the  date of a  single  break  in  multivariate  time  series,  including Z(O), Z(l), and deterministically 
trending  regressors.  Although the width  of  the  asymptotic  confidence  interval  does  not  decrease 
as the  sample  size  increases,  it  is  inversely  related to the number  of  series  which  have  a  common 
break date, so there are substantial  gains to multivariate  inference about break  dates.  These 
methods are applied to two  empirical  examples:  the  mean  growth rate of output in  three European 
countries, and the  mean  growth rate of U.S. consumption,  investment, and  output. 

1. INTRODUCTION 

The past decade has seen considerable empirical and theoretical research on the detection 
of breaks in  economic  time  series. Notably, Perron  (1989) and  Rappoport  and Reichlin 
(1989)  provided  evidence that aggregate output can  be  usefully  thought  of as being subject 
to two  types  of shocks: highly persistent shocks, which  affect  mean  growth rates over 
decades, and transitory shocks, which  result in business  cycles and  other  short-run dynam- 
ics.  Because the permanent shocks occur so rarely, it is  useful to model  them as one-time 
events, in the case at hand as one-time  changes  in the trend growth  of  real output. Making 
the assumption that the break dates were  known,  Perron  (1989) and  Rappoport  and 
Reichlin  (1989)  concluded that U.S. output was better modelled as being stationary around 
a  broken trend, or a trend with  a  change  in its slope, than  as being integrated of order 
one. Although subsequent work  (Banerjee,  Lumsdaine, and Stock  (1992), Christian0 
(1992), and Zivot and  Andrews  (1992))  which treated the break date  as unknown  ques- 
tioned  some  of  these  results, there remains  evidence  of breaks in the mean  growth rates 
of many aggregate economic  time  series. 
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The empirical motivation for this  study is to build on this  evidence  of  the  existence 
of breaks in  mean  macroeconomic  growth rates by providing point estimates and, more 
importantly, confidence intervals for the dates of  these breaks. Graphical evidence points 
to growth  in the United States and  Europe slowing  down  sometime  in  the 1970s, although 
for some countries, especially Germany, this  graphical  evidence  is far from  clear.  Although 
Perron (1989), Banerjee,  Lumsdaine, and Stock (1992), and others have  used  time  series 
methods to provide  estimates of break dates in  mean  growth rates, formal  measures  of 
the precision  of  these  estimates  were  unavailable to these  researchers.  An  interval  estimate 
of the break date is  considerably more useful to economists attempting to understand this 
growth  slowdown than is a simple point estimate  with no measure of sampling uncertainty. 
Further, many factors which are generally  deemed important in  this  slowdown,  such as 
external supply  shocks and the growth of the modern European welfare state, are inter- 
national and could  result  in the breaks being contemporaneous. This  suggests that gains 
in  precision  might be  achieved  by a multivariate treatment, in  which the growth rates are 
modelled as breaking contemporaneously across  series.  However,  techniques for inference 
about break dates in multivariate systems are currently  unavailable. 

This paper therefore develops  techniques for inference about breaks,  including  interval 
estimation of the break date, in multivariate systems. The econometric literature to date 
has focused on tests for structural breaks,  with  recent  emphasis on the  case that the break 
date is  unknown  (see  Hansen (1992), Andrews (1993), and Andrews and Ploberger (1994) 
for recent treatments). However, the problem of  inference about the break date itself  has 
received  significantly  less attention. We therefore  develop the econometric  theory of inter- 
val estimation of the date of a break in a multivariate time  series  model  with  otherwise 
stationary or cointegrated variables.  This entails developing asymptotic distribution theory 
for the maximum  likelihood estimator of the break date. As this theory makes  precise, 
the break-point problem  is one in  which  there are substantial payoffs for using  multivariate 
rather than univariate techniques:  while the asymptotic  confidence  interval for the break 
date does not decrease  with the sample  size,  it  is  inversely  related to the  dimension of the 
time  series. 

The empirical motivation concerns  breaks  in the mean  growth rate, for which  the 
parameters describing  the stationary dependence  in the stochastic part of the process (the 
autoregressive parameters) are treated as nuisance parameters. However, our results are 
general enough to permit an extension to breaks in  any  of the coefficients  of an I(0) or 
cointegrated model.  Even though this  general  problem  is not the focus of the  empirical 
work  in  this study, it  is arguably of interest  in other applications, so we present  tests and 
confidence intervals for the general  case. 

We  next turn  to the empirical  problem of dating the  slowdown  in  postwar European 
and U.S. output growth. For France, Germany,  and Italy, there is  evidence  of a break  in 
the univariate growth rates of output (cf. Banerjee,  Lumsdaine, and Stock ( 1992)), and 
the model  of a single common break date is found to be consistent  with the data. We 
therefore consider a multivariate system  with a single common break date, and find that 
a 90% confidence  interval for the break is  the  second quarter of 1972 to the second quarter 
of 1975. 

Dating the  slowdown  in the postwar U.S. is  somewhat  more  difficult;  the  univariate 
estimate of the break date for U.S. output is  imprecise.  However,  dynamic  economic 
theories  suggest that a discrete  productivity  slowdown will  be  reflected  in  lower  growth 
rates not only of output, but of  series that are cointegrated  with output, in particular, 
consumption  and investment (cf. King,  Plosser, and Rebelo ( 1988)). We therefore  examine 
a trivariate system  of  real per capita output,  consumption,  and investment  in  which, 



BA1 ET AL. TESTING AND  DATING COMMON BREAKS 397 

following King, Plosser, Stock, and Watson  (1991), there are two cointegrating vectors 
corresponding to the stationarity of the logarithms of the consumption/income and invest- 
ment/income ratios. When  modelled as a system there appears to be a  common  slowdown 
in the growth rate that is statistically significant.  The  90%  confidence interval is centred 
around the first quarter of  1969 and is  very tight when the theoretical cointegrating vectors 
are imposed,  although it is  somewhat  wider (for example,  1966-1971)  when the cointegrat- 
ing vectors are estimated. 

The  paper  is organized as follows.  Section 2 contains the theoretical econometric 
results concerning multivariate change-point tests and confidence intervals for Z(0) 
dynamic  models.  Section 3 addresses the change-point problem  in a cointegrating system. 
Section 4 presents a Monte Carlo study of the tests and interval estimates.  The  empirical 
results are presented in  Sections 5 and 6 for the European and U.S. applications, respec- 
tively.  Section 7 concludes. 

2. TESTS AND  CONFIDENCE INTERVALS FOR A  BREAK IN 
Z(0) DYNAMIC MODELS 

2.1. Model and notation 

The  system  of equations considered  is 

Yr=p+x;= l  Ajyr - j+TX, - I+dr (k ) (A+x~= ,  B,Yr- ,+mr-I)+Et,  (2.1) 

where Y t ,  p, A, and Et are n X 1 and ( A j }  and (B’} are n X n ;  the roots of { Z -  A(L)L} and 
of { Z -  A(L)L - B(L)L) are outside the unit circle; dr(k) = 0 for t s k  and dr(k) = 1 for 
t >  k ;  and X ,  is a matrix of stationary variables. It is  convenient to write the system  of 
equations (2.1) in its stacked form 

where V ; = ( l , y ; + .  . . , Y ; - ~ , X ; - ~ ) ,  8=Vec(p,A1,.  . . , A p ,  r), 6=Vec(A,B1, 
. . . , Bp, n), and Z is the n X n identity matrix. Model  (2.2)  is that of a full structural 
change in that it allows  all  coefficients to change.  If it is  known that only  a subset of 
coefficients  such as the intercept has a  possible break, a partial structural change  model 
is more appropriate. The  unchanged  parameters should be estimated using all of the 
observations to gain  efficiency. In addition, tests for partial structural changes will  have 
better power than those for full structural changes. This leads to the consideration of  a 
general partial structural change  model 

where S is a  selection matrix, containing 0’s and l’s and having  full  row rank. Note  that 
S’S is  idempotent  with  non zero elements  only on the diagonal. The rank of S is equal 
to the number  of  coefficients that  are allowed to change. For S =  Z, (2.2)  is obtained. For 
S =  ( s o l )  with S = (1,0, . . . , 0) ,  we have 

which has a  break  in the intercept only.  The  system  (2.3)  can  be rewritten more  compactly 
as 
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where 2 i ( k )  = (( Vi@Z), d,  (k)( Vi@Z)S') and p = (W, (SS)f ) f .  Write 2, for 2, ( k )  for nota- 
tional simplicity. The errors &, are assumed to satisfy the following assumption: 

Assumption 2.1.  Let E, be a martingale  difference  sequence  with  respect to 9, - 1 = 
o-field (2, , E, - , 2, - , 6, - 2 ,  . . .) satisfying, for some a > 0, maxi  sup, E( a ) -= 00 and 
E( E, E : - ~  I g- 1 ) = X for j = 0 and 0 otherwise.  Also  suppose that EX, = p,  for all t ,  maxi 
SUP, E(X;+") < 00, T-' CT=, ( X , - p x ) ( X , - p x ) f G ~ x x ( 0 ) ,  7'-' +&-jGEXt.Y:-j = 
M x y ( j ) ,  j = - p , .  . . , p  and X T ( - )  * B , ( * ) ,  where X T ( ~ ) = T -  c,=, (Xt-pX),  [ X ]  
represents the integer part of X ,  and B, ( ) is a Brownian motion with  covariance  matrix 
M ,  (0). 

Throughout, llxll represents the Euclidean norm, i.e. llxll= 3)'" for X E R ~ .  All 
limits are taken as the sample  size, T, converges to infinity,  unless stated otherwise. 

2.2. Tests for a break at an  unknown date 

The tests for a break in the coefficients are based on the sequence  of  F-statistics  testing 
SS = 0, for k = k ,  + 1, . . . , T -   k ,  , where k ,  is  some  trimming  va1ue;The  null  hypothesis 
is that  no  break exists (SS = O ) .  For a given k,  the estimator of P(k) (ky the feasible 
seemingly unrelated regression method)  and the F-statistic testing SS = 0, F(k), are 

where R = (0, Z) so that RP = SS, gk is  the estimator of C based on OLS residuals  under 
the alternative_hypothesis,  given k.  The stochastic  processes  of interest are the estimator 
process, T"*(p( [ T T ] )  - p), and the F-statistic  process, FT( z) = F([ T T ] ) .  

A variety of tests for a break, based on the Wald  F-statistic  process FT, have  been 
proposed in the literature. For example, the Quandt (1960)  likelihood ratio statistic is the 
maximum  of the likelihood ratio statistics,  testing for a break at a sequence  of  possible 
break  dates; the analogous statistic here  is to consider the maximum  of the F T  process. 
Hansen ( 1992)  proposetd  using the mean  score  test for a break; the Wald  test variant used 
here  is the average of F(k) over  some  range.  Andrews and Ploberger  (1994)  examine the 
question of  devising  most  powerful  tests for breaks. In the empirical application, we 
consider  two  of  these  test statistics: the  maximum  Wald statistic and the logarithm of the 
Andrews-Ploberger  exponential  Wald statistic 

Here T, refers to  an initial fraction of the  sample  which  is trimmed; this  is  often 
taken to be either 0- 15 or 0.01. The limiting distribution of the FT process  has  been  well 
studied for a variety of models; see for example  Deshayes and Picard  (1986),  Andrews 
(1993), and Andrews and Ploberger  (1994). The limiting distributions of  these  statistics 
obtain by applying the continuous mapping  theorem to the limiting  representation of FT. 
Andrews and Ploberger  (1994)  provide  general conditions under  which  these  limiting 
distributions will hold, although these conditions are "high  level" and must  be  verified in 
practice. For the  model  of  interest  here,  (2.3),  the  limiting  properties  of the estimator and 
F-statistic process are summarized by the  following  theorem.  Let " * " denote weak 
convergence  of random elements  in a product space  of D[O, l]. 
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Theorem 1. Under  the  assumption  of 2.1 and S6 = 0, 

(i) f l (B([T-  1) - p) A H( )-'G( - ), where 

and G = ( G ; ,  G2)'  with Gl (z) =B( l), and G2( z) = S[B( l)  - B( z)], where  B( z) is 
a  vector of Brownian  motion  with  variance zQ(l)@C-', and Q(z) = plim 
T-' V,V'= zQ( 1). The  weak  convergence  holds in the  space D [ t * ,  1. - 5*] .  

(ii) FT * F*, where F*(z)  = { z( l - z)>-'II W( z) - z W( 1) [ l 2  and W( ) is a  vector of 
independent  standard  Brownian  motion processes with dim ( W )  = rank ( S ) .  

(iii) g(FT) * g(F*),  for  g( 9 ) denoting  the Sup- W and Exp- W functionals, respec- 
tively,  given in (2.8) and (2.9). 

The proofs of this  theorem and Theorem 8 in  Section 3 are omitted to conserve  space. 
Proofs of all other theorems are given  in the Appendix.' 

2.3. Inference for breaks in I(0) dynamic  models 

If  there  is  in  fact a break, then a natural question to raise  is  how  one  could construct 
confidence  intervals for the true break date. This  problem  has  been  considered by various 
authors, using a variety of approaches; see, for example,  Hinkley  (1970),  Picard (1989, 
Yao (1 987),  Siegmund  (1988), and Kim and Siegmund  (1989). Most of this  work has 
focused on the change-point  problem  with  i.i.d.  Gaussian errors. Picard  (1985)  provided 
an asymptotic distribution for the Gaussian MLE of the breakpoint in  the  case that a 
univariate process  follows a finite order autoregression; also see Yao (1987).  Picard's 
results  permit the construction of asymptotic  confidence  intervals for the break point in 
the univariate case.  These  results are extended  here  in a number  of directions: ( l )  the time 
series  is  multivariate rather than univariate; (2) the covariance  matrix X is  explicitly treated 
as unknown and estimated; (3) no normality  assumption  is  made, nor is the underlying 
density function assumed to be known. We only  assume  the  disturbances form a sequence 
of martingale  differences  with  some  moment  conditions, and use  pseudo-Gaussian  maxi- 
mum  likelihood estimation; (4) we consider partial structural change  models,  allowing 
some  of  regression  parameters to be estimated  with  the  full  sample to gain  efficiency; (5) 
we further study  regression  models  with I( 1) and trending  regressors and with  serially 
correlated errors, encompassing a broken-trend stationary model and  that of broken 
cointegrating relationships. 

We consider  estimating  (2.3) or (2.5) by the  pseudo-Gaussian MLE. We  assume 
llS6 11 # 0, so that there  indeed  exists a break. Denote by L(k, p, X) the  pseudo-likelihood 
function admitting a break at k with  parameters p and C. Let (ko,  PO, Eo) Cenote, the true 
parameter with ko = [TzO]  for zO~(0, 1). For each  given k, denote by (P(k) ,  C(k)) the 
estimator that maximizes  the  likelihood function. The break point estimator is  defined as 

k̂ = argmax L(k ,   b (k ) ,   e (k ) ) .  
I s k $ T  

The final estimator is  defined as (k ,  /?(k), fj(k^)), also  written as (g, b r ,  zr). 
The asymptotic  behaviour of k is obtained by considering a sequence whichis designed 

to produce an asymptotic approximation to the finite  sample distribution of k when the 

A A A  

1 .  A complete  proof of the  two  omitted  theorems  is available upon request. 
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magnitude of the break is  small.  Specifically,  following  Picard  (1985) we assume that 
p0 = ( O b ,  &-S')', where 8T is a sequence  such that 8T= SOVT with v T +  0 and . \ rTuT/  

(log T )  + m, where U T >  0 is a scalar. There are two  reasons for considering  small  shifts. 
First, this  framework  permits an analytical  solution to the density function of the estimated 
break point, so that confidence  intervals can be  easily constructed. Second, if  we  show 
that a break with a small magnitude of  shift can be consistently  estimated,  it  must be the 
case that we can consistently  estimate a break  with a larger  magnitude of shift, for the 
larger the magnitude of shifts, the easier to Ldeztify a break. 

We shall  study the joint behaviour of (k,  p i ,  e,), particularly, their rates of conver- 
gence and their  limiting distributions. The final  result  is  given  in  Theorem 4 below.  Antici- 
pating the rates of  convergence for the estimated parameters, we reparameterize the 
likelihood function, such that L(k, PO + T-'I2B, X. + T-' l2X),  where p = (e', (SS ) ' ) l .  The 
break k is  reparameterized  such that k = k( v )  = ko + [vvF2] ,  for V E  R. When v varies, k can 
take on all  possible  integer  values.  We  define the likelihood function to be zero for k non- 
positive and for k greater than T. It is  clear that maximizing the original  likelihood  function 
is equivalent to maximizing the reparameterized  likelihood.  Define the pseudo-likelihood 
ratio as 

where Et ( k )  = y t  - Zl (k)'(po + T - ' / 2 p ) .  
It is also clear that maximizing the original  likelihood function is  equivalent to maxim- 

izing the Jikelihood ratio. Suppose that v* ,  p*, X: maximize the likelihood raeo, then 
p*=f l ( (Bi -p0) ,  X*:JT(ei-E0), and v*=v$(k--0).  Thus to show .J?;(pi-po), 
JT(&- Eo), and v$(k- ko )  are all  stochastically  bounded  [i.e., Op( l)], it  is  sufficient to 
show p*, X*, and v* are all  stochastically  bounded. This, in turn, is  equivalent to showing 
that the likelihood ratio  cannot achieve its maximum  when  any  of the parameters, v,  p, 
X, is too large.  Because AT(O,O, 0)  = 1, it suffices to show the likelihood ratio is  smaller 
than 1 for large  values  of v,  p, and X. Formally, 

Theorem 2. Under  Assumption 2.1, i f v ~  isjixed, or i f v ~ + O  and .J?;vT/(log T)+co,  
then for every E > 0, there exists a vl  > 0, such that 

sup sup AT(v, p, X) > E (2.1  1) 
I 4  201 P,Z 

and for every E 0, there exists an M >  0, such  that 

(2.12) 

This  theorem  gives  rise to the desired rates of  convergence. In particular, 

Having  studied  the  global property of the likelihood ratio (equivalently,  the rates of 
convergence), we  now examine the local property of the likelihood ratio in order to obtain 
the limiting distributions for the  estimated parameters. We shall  derive  the  limiting  process 

U$(&- k,) = Op (1). 
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for the likelihood ratio when the parameter  vector (v ,  p, E) is  restricted  in an arbitrary 
compact  set. We then use the continuous mapping  theorem for the argmax functional to 
obtain the limiting distributions. Note  that the argmax functional is  generally only continu- 
ous  for stochastic processes  defined on compact  sets (details can  be  found in Bai (1992)). 
It is thus necessary to obtain the rates of  convergence  of estimated parameters in order 
to invoke the continuous  mapping theorem. The rates of  convergence guarantee that 
(v*, p*, I:*) will  lie  in a  compact  set  with a probability arbitrarily close to 1. 

Theorem 3. Under the conditions  of Theorem 2, if vT+ 0 and J?tT/(log T ) +  00, 
then log A T ( v ,  p, I:) converges weakly on any compact  set of (v ,  p, I: ) to the process log A 
given by 

logA(v,P,E)=f t r ( E ~ ' E I : ~ ' ( Y - f E ) ) + ~ ' Q ' / 2 5 - f ~ ' ~ ~ + ~ W ( v ) - f l v l c ,  (2.13) 

where tr ( A )  denotes the trace  of matrix A and Y is  a n X n symmetric matrix of  normal 
random  variables. More speciJically, Y is the limiting  random matrix of 
T-'12 ET=, (E& -Zo). Furthermore, Q= plim T-' I::= 1 Z,(ko)I:O' Zt(ko)', 5 is N(0, I ) ,  
c= &S'S( Ql Q&' )S'SGo with Ql = plim T-' I::= VtV:. The process W( - ) is a  single 
dimensional  two-sided  Brownian motion on (-00, 00). A  two-sided  Brownian motion W( ) 
on the real  line is defined  as W(v)  = Wl  (-v)  for v < 0 and W(v)  = W ~ ( V )  for v 20, where 
Wl  and W2 are two independent  Brownian motion processes on [0, 00) with Wl(0)  = W2(0) = 
0. 

Theorem 4. Under the assumptions  of Theorem 3, we have 

T'/2(Bi-  P O )  4 Q- ' /2{ ,  

T'"(2g-E-o) 4 'P, 
[S;~'~(Q~QZ~')S'SGT]({-~O) v*, 

where V* is  distributed as argmax" ( W(  v)  - f I v1 ). 

(2.14) 

(2.15) 

(2.16) 

Corollary 4.1. Assume the conditions of Theorem 3. 
(i) For the intercept shift model (2.4), we have 

&-xo'&-(c- ko) 4 v*. 
(ii) For the full structural change  model (2.2), we have 

&$(Q1 @EO' ) 6 ~ ( { -  ko) 4 v*. (2.17) 

In addition, (i) and (ii) hold  when AT,  Zo , 8T, and Q1 are  replaced by their estimates. 

Because f l v T / ( l o g   T )  + 00, in this formulation z^ = L/T is consistent for ro = ko /T, 
even  though  itself  is not consistent. Picard (1985) provides an explicit  expression for  the 
limiting density of V*, y(x) ,  as 

y ( x )  = : e'x'@(-: m) - ;m<- &m), (2.18) 

where @( * ) is the cumulative normal distribution function. The density is  symmetric and 
nondifferentiable at X = 0. The  90th and 95th percentiles are, respectively, 4-67  and 7.63. 
It can be  shown that all the moments  of the density  exist and  the density has heavy  tails, 
with  a variance of  26 and a kurtosis of 14- 5. 
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Because the density of V* does not depend on  any nuisance parameters, the  results 
in Corollary 4.1 can be  used to construct asymptotically  similar  tests of k = ko or equiva- 
lently to construct asymptotic confidence  intervals for ko . In general, a confidence  interval 
with asymptotic coverage of at least  100( 1 - n)% is  given  by 

Z=[C- [M] - 1, C+ [Ak] + l]. (2.19) 

For the case  of an intercept  shift  only, 

Ak= c(l/2)n(i%yi)-1,  (2.20) 

where C ( I / ~ ) ~  is the (1 - in)th quantile of V*. 
For the general  case 

Ak= c c l / 2 ) n [ ( s ~ T ) ~ S ( Q l ~ e ~ 1  )sYsiT)l-l, (2.21) 

where Q l  = l/TXT=, V,Vi. 
The expression  (2.20)  provides an important motivation for using  multiple equation 

systems to construct confidence  intervals for k. Consider the case that the break date is 
the same for each of the series, C is diagonal, and A:/& is the same  in  each equation. 
Then, in  large  samples, the width of the confidence  interval  declines as l/n. This contrasts 
with the conventional case  of constructing confidence  intervals for regression  coefficients 
that are the same  across equations, in  which  confidence  intervals shrink at rate l/&.  In 
the break  date case,  even if Ai= 0 for some equation, so that there is no break in that 
equation, the asymptotic results  indicate that including the additional restriction  does not 
impose any additional cost  in  terms  of the width  of the resulting  confidence  intervals. 

3. INFERENCE  FOR BREAKS IN COINTEGRATING  PARAMETERS 

Testing for cointegration allowing for a possible  break  is  studied  by  Gregory and Hansen 
(1996), and  Campos, Ericsson, and Hendry  (1996), and we provide no further results on 
tests for a break. Instead, we study  how to estimate the break date when there  is  indeed 
a break  and investigate the statistical property of the estimated  break point. We consider 
the cointegrated system  in triangular form 

Yt=AXt+yt+p+BW,+5,,  (3.la) 

x,=x,-, +S,, (3.1 b) 

where Y, is r X 1 and X,  is (n - r )  X 1, W, is an observable Z(0) process, 6 ,  and E f  are Z(0) 
error processes. More specifically, we make  the  following assumptions: 

Assumption3.1. 5,=zJc0 C,&,-,=C(L)&,, &=xJco Djer-j=D(L)e,, C(l)andD(l) 
are full rank; xJzo jll C, 11 < 00 and XJc0 jll Di 11 < CO ; ( E , ,  e,) are i.i.d.  with  finite 4+ a (a > 0) 
moment. The regressor W, is a mean-zero  second order stationary process  with  uniformly 
bounded  4 + a moment. 

For technical  reasons, 5, is  assumed to be independent  of the regressors.  This  is a 
plausible assumption because W, can be taken as the leads and lags  of  changes  in X f  . (cf. 
Stock and  Watson (1993)). 

Assumption  3.2. The error process et is  independent of the regressors for all  leads 
and lags. 
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Assumption 3.3. The Z(l)  regressor  X,  satisfies: 

E(x;+x,:+. kx' - -+xi  )SA4 fo ra l lkz l  

Note  that the expectand  is  bounded by k, so every 
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and i= 1,.  . . , n-r .  

moment  exists. The assumption 
requires a uniformly  bounded  first  moment  over  all  k.  Any random walk  with  i.i.d. normal 
disturbances satisfies  Assumption 3.3.2 

Assumption 3.4. The regressor wI satisfies: 

kw$ si", for all k z  1, i= 1,. . . , dim (W,). 
w;1+w',+- *.+W; 

This  assumption  is  satisfied by any i.i.d.  sequence, and in  this  case,  the  expected  value 
is  identically  1. It is  also  satisfied by linear  Gaussian  processes  with  absolutely  summable 
coefficients. 

Incorporating a linear  time  trend  in  (3. la) has  two  purposes. First, it allows  us  easily 
to extend the model to allow for drifts in Xt (to be discussed later). Second, it includes a 
trend-stationary model as a special  case  (corresponding to A = 0). Equation (3.1)  may  be 
considered as a general  regression  model  with Z( 1) regressors. 

We consider the extension of  (3.1) to the  case  of a single  break  in one or more of 
the coefficients.  If  all  regression  coefficients are allowed to change, we can  write 

Y r = A X l + y t + p + B ~ w , + d t ( k o ) ( A I X , + y l t + p 1 + B l ~ l ) + ~ , .  (3.2) 

This can be  rewritten as 

where Ut= (X,, t ,  1, W:)',  OO=Vec ( A ,  y,  p ,  B), GT=Vec (AI ,  y1, p1, B1 ). This  is a full 
structural change  model.  As  in  Section  2, if it is  known that some  of the coefficients do  not 
change, a full structural change  model  does not give  efficient  estimation for the regression 
parameters. Thus we consider a more  general setup, allowing the unchanged parameters 
to be estimated  with the entire sample.  Such a partial change  model has the form 

Y~=(U~QZ)~O+~~(~O)(~JQZ)S'SGT+~~, (3.3) 

where S is a selection matrix, containing elements 0 or 1. Model  (3.2) corresponds to S= 
Z. The system  of equations (3.3)  can  be further rewritten as 

Yl = zt (ko ) P O  + 5 1 ,  

where Zt(k) = ((UlQZ), dt(k)(UJQZ)S'), PO=(&,  (S~T)')'. 
We shall  assume  there  is a break  in at least one coefficient, so that I~SST 11 ZO. AS in 

the previous  section, we assume ST converges to zero. In addition to the two  reasons  given 
in  Section  2.2,  there  is an additional reason for this  framework.  When 6 r  does not depend 
on T and if there is a shift  in the linear trecd or in the cointegrating  coefficient.  (i.e., yl # 0 
or A I  #O), then  the  estimated  break  point k converges  rapidly to ko, so that P(k #ko)+O as 

2. We  thank K. Tanaka  and C. Z. Wei  for  providing  us  with proofs  for  this  claim  (private  communication). 
It can be shown that  the  underlying  random  sequence  has  a  uniformly  bounded  moment of an  arbitrary  order 
for  normal  errors. 
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T+ m. This implies  itself has a  degenerate  limiting distribution. In practice,  because T 
is  finite,  k  varies and has a  nondegenerate distribution. 

Since the linear trend dominates, in  magnitude, the other regressors,  if the trend 
parameter y1 shrinks at the same rate  as other parameters, then in the limit, the trend 
parameter  dominates the limiting  behaviour of the break point estimator as if there were 
no shifts  in other parameters (equivalent to A I  = 0, p = 0, B1 = 0). When  a  linear  trend  is 
not included  in the model,  then the cointegrating  coefficients  will dominate the Z(0) 
coefficients. In the following, we shall  consider the case  in  which the linear trend and the 
cointegrating coefficients shrink much faster than the coefficients  of Z(0) regressors so that 
in the limit  k - ko  is  influenced  by  all  shifted  parameters. This also indicates that we can 
identify  a  much  smaller  shift  in the cointegrating coefficients or in trend coefficients than 
in the case of a  shift  in the Z(0) regressors.  Let 

where aT=vec (AI ) ,  YT= y1, p ~ = p l ,  bT=VeC ( B I ) ,  sO=(ab, yb, p&, bb)', and ] I , & ,  Z3 are 
identity matrices. We assume vT is  a  scalar  such that 

vT+ 0, and flvT/log T + W .  (3.5) 

Despite the magnitude of shift  in the trend and cointegrating coefficients  being  much 
smaller than  that of the Z(?) regressors, we can consistently  estimate the break fraction 
ko /T,  and, in addition, v$(k - ko) = Op (1). 

This rate of  convergence for the estimated  break point is  sufficient to establish that 
the estimated A and A I  have the T rate of convergence, y and y1 have the T3'2 rate of 
convergence, and  that the estimated p s  and Bs have the .\TT rate of  convergence. In 
addition, the variance matrix of &, Eo, is  estimated  with root-T consistency.  Anticipating 
these rates of  convergence (but not imposing  these rates of  convergence), we reparameterize 
the parameters in the following  way.  Let 

b T =  diag (DT, SDTS' ), 

where  DT= diag ( TZl , T312Z2,  JTZ3) with Zl , Z2,  Z3 being  ide_ntity  matrices. The matrices 
DT and  SDTS'  correspond to the rates of  convergence for 8 and SsT, respectively. The 
regression parameter is  then  reparameterized as PO + &'p, the variance of t t ,  &, is 
reparameterized as ZO + T112Z, and the break  is  reparameterized as k = ko+ [vv;*]. The 
corresponding likelihood ratio is  given  by 

Unlike the procedure in Section 2, where the break point is obtained via  a  global 
maximization of the  likelihood for every  kE [ 1, T], a  restriction  such that ke [ T g o ,  
T( 1 - E O ) ]  is  imposed  in this section,  where EO 0 is  a  small  number. Without this  restric- 
tion, the proof of our result  would be  much more demanding. The restriction  is not too 
stringent from the practical point of  view, as 0 is arbitrary. Under this setup, the 
estimated  break point is  defined as 

L= argmax sup L(k, PO + &'p, Zo + T-I12 

The global  behaviour of the likelihood ratio is  characterized by: 
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Theorem 5. Under Assumptions 3.1-3.4, the result of Theorem 2 still holds for the 
newly  defined AT( v, p, X ). 

As  in the previous section, Theorem 5 implieSAthe  following rates of  convergence 
&(Bi- P O )  = Op (l), T'/'(Z; - Eo) = Op (l), and v$(k - ko) = Op( 1).  The  theorem  implies 
that the likelihood function achieves its maximum on compact  sets of the reparameterized 
parameters (v ,  p, X) with large probability. Thus, to study the limiting distribution of the 
estimated parameters, we only  need to focus on the behaviour of the likelihood ratio  on 
compact  sets  of (v ,  p, X). This we do in the following theorem. 

Theorem 6. Under Assumptions 3.1-3.4 and (3.9, the log-likelihood ratio converges 
weakly on any compact  set of (v ,  p, X )  to 

l o g A ( v , P , C ) = f t r ( X ~ ' X X o ' ( Y - ~ C ) ) + P ' ~ - f P ' Q P + ~ W ( v ) - f l v l c ; ? ,  

where 

(1) Y is a n X n random matrix of normal  random variables; 
(2)  Q is the random matrix plim (&I X:= I Zt (ko)Xi 'Z(ko)&');  
(3) K is the limiting  distribution of D,' ET=, Zt(k0)XG'&; 
(4) cl is a random  variable given by c1 = 66 S'SHIS'SSO , 

H I =  ( 0 r ) CD@XO'C( l)R&C(  1)'Xi' 0 

with r=X,"=-, [ E ( w ~ w : - ~ ) @ E ( & ~ - ~ ) ] ,  and 

zoD( l)Rf/2ZZ'Rd/2D( 1)' T;/~D(  l)Ra/2Z &,a( l)Rf/2Z 
CD = ( T; /~Z 'R~/~D(  l)' d TO 

6 2  'SZa/'D( 1)' TO l 

where Z is a standard  normal vector, R& = E&&, R, = Ee,e: and zo = ko / T ;  
( 5 )  c2 is  random  variable  given by S6S'SH2S'SSo, where R, = Ew,w:  and 

( 6 )  W(v)  is a two-sided  standard  Brownian motion on the real  line  and  is  independent 

(7)  c l ,  c2 and W( v) are  independent of Q, K, Y .  
of the random  variables cl and c2 ; 

The  next  theorem  derives the limiting distributions for the estimated parameters, 
including the change point: 

Theorem 7. Under the  assumptions of Theorem 6, 

& ( B i - p o >  4 Q - ' K ,  

JT(gi - X0 ) 4 Y ,  

(S6s'sH2s'sS0 )2 v$(L- k o )  4 V*, 
S~S'SHIS'SSo 

where V* is  distributed  as argmax { W( V )  - 1 V I  /2]. 
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and 

The following  corollaries  address  several  leading  special  cases : 

Corollary 7.1. For an intercept shift only, 

Corollary 7.3. Suppose a shift occurs  in the cointegrating coeficients only ( A ,  # O ,  but 
y1  = p l  =0,  PI = O ) .  Let aT=vec ( A ,  ), we have, 

where xko is equal to X ,  for t = ko . 

Remarks. 

(1) When 5, are serially uncorrelated, so that C( 1) = Z and X0 = a, , then (3.6),  (3.7) 
and (3.8) are simplified to 

(p$Ei'PT)(C-kO) ' v*, (3.9) 

( Y > ~ ~ ' Y T ) k i  (L- ko) 4 v*, (3.10) 

a > ( x k , ~ , @ ~ i ' ) a T ( L -  ko) 4 v*, (3.11) 

respectively. 

(3.8) and (3.11) may  be written  in  this form. 
(2) We note that a>(XkoXko@xi' )aTEXL,,Ai ZiIAIXko. Thus the scaling factors in 

(3) Corollary 7.3 can be  modified to apply to various other special  cases. 

For a shift  in the intercept and cointegrating coefficients,  replace aT by 
(a$, p$)' and replace xko by (XLo, l)'. 
For a shift  in cointegrating coefficients and the linear trend, replace aT by 
(a$,  yk)' and replace X k o  by (XLo, ko)'. 
For a shift  in the intercept, cointegrating coefficients, and linear trend, replace 
aT by (a$, y>, p$)' and replace x k 0  by (XLo, ko ,  l)'. 
Results corresponding to a shift  in the Z(0) regressor W ,  can be  derived  easily 
from  Theorem 7. Because H ,  and H2 are block diagonal, modifications take 
a simple form. For example,  in Corollary 7.1, if B, # O  in addition to p 1 #O, 
then (3.6) still  holds  with the following  modification: adding b$[E(w,w:)@ 
Zi ' ]bT to the numerator before taking the squared  value, and  adding 
b$rbT to the denominator, where bT=vec ( B , ) .  
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ConJidence Intervals 

The  preceding results can be  used to construct confidence intervals for the true break 
point. Let c ( ~ / ~ ) ~  denote the 1 - in-th quantile of V*. In general,  a  confidence interval for 
ko with asymptotic coverage  of at least  100( 1 - X ) %  is  given  by 

Z = [ L -  [Ak] - 1, L+ [Ak] + l]. 
For a  shift  in the intercept only 

with (0) being the estimate of C( l)n,C( l)’, the spectral density of 5, at zero. 
For a shift in the trend only, Ak becomes 

For a shift  in the cointegrating coefficients  only  [see  Remarks (2)] 

xi2; [e,y{(O)2iy1]2,x$ 
M =  C(1/2)7r (xi2igi121xi)2 

In the general  case  of  Theorem 7, 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

where SS^, is an estimate of ( S S T )  and kl andF2 are estimates of  HIAand H 2 ,  respectively. 
In p_articular,_  the upper-left block of HI contains &Qe-lf,(O)2-’, with &= 
(Ti, k,  1)(Xi, k,  l)’; the lower-right block  of f i l  contains f, an estimate of r. The matrix 
H2 is  defined  similarly. 

Simpler  expressions are available for serially uncorrelated 5,. In this case,  confidence 
intervals should be  based  on  (3.9)-(3.11). 

Extension to  drifted X , .  

Thus  far, we assume the process X ,  is  driftless.  However, the same results hold  even 
if some or all of the components  of X ,  have drifts. Consider 

Y,=AX,+p  +Bwi+(AIX,+pI  +B,wr)d,(ko)+51, (3.17a) 
X,=Y+X,-,+E,. (3.17b) 

We assume Y # 0, so at least  one  component has a  nonzero drift. In model  (3.17), the 
linear trend is not in~luded.~ If more than one  component  of X ,  has a drift, then asymptotic 
multicollinearity exists.  Write Y = (Y , . . . , Yq)’ ,  where q = n - r.  Without  loss  of  gen- 
erality, assume Y, # 0. The  final  result  does not depend on which  component has a  nonzero 
drift, and there is no need to estimate the drift coefficients.  Assume that wt= 
(AX,+,, . . . , M,-,). Let A I  = (rl, . . . , r,) so Ti is the i-th  column  of A l .  We can  rewrite 
(3.17a) as follows  (see,  e.g.,  Hamilton  (1994),  p.  627) 

Y,=A*X:+yX,f+p*+Bw:+df(ko)(A:X:+ylXq,+p:+Blw,)+5,, (3.18) 

3. A linear  trend  can be added  without  affecting  the  analysis. 
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where AT is equal to AI with the last column  deleted, X: = Xit - Yi/Y&q,  (i= 1, . . . , - 1 ), 

P:=PI+B1(16Y), 
W: = (M:+,- Y', . . . , m;-,- Y y  

Note  that X: is  driftless, and W: has mean  zero.4 Thus the transformed model  satisfies  all 
the conditions imposed to (3.2), except the linear trend is  replaced by Xq, . But X,,' has the 
same  behaviour as a linear trend, as far as asymptotic  behaviour  is  concerned.  Since the 
transformation is rank preserving, the pseudo  likelihood function based on (3.17)  is  ident- 
ical to  that based on (3.18).  This  implies that the  estimated  break point is  identical  irrespec- 
tive  of  which equation is  used. Thus we can apply the earlier  result for the driftless  model 
to the transformed model. The difference  is that we must  assume A I  shrinks faster than 
the driftless  model,  because Xt  behaves  like a time trend t .  Assume 

A I  = T-IAOuT, and AoY # O .  (3.19) 

Under this assumption, Corollary 7.3  still  holds. It is not necessary to assume  all  coefficients 
decrease at the rate T-'vT. Let Xt=  (X;") ,   Xi(2)) ' ,  where X,(')(h X 1) is driftless, and X,") 
( ( q  -h)  X 1) has a drift for each of its  components.  Let Y = (0, Y'(2))' and 
A I  = ( A y ) ,  A?)) ,  partitioned conformably.  Assume for some  fixed  matrices Ail) and Ah2), 

A y )  = T - 1 / 2 A f ) u T ,  A y )  = T-'Ai2)uT, either A$,') # O ,  or A$,2)Y(2) # O ,  or both. (3.20) 

Then Corollary 7.3  still  holds.  These  results are stated in the following  theorem. 

Theorem 8. For a shft in  the  intercept  only (equation (3.17a) with A I  = O  and B1 = 
0) ,  Corollary 7.1 still holds. For a shvt in the  cointegrating coeficients only (equation (3.17a) 
with p1 = O  and B1 = 0 )  together  with (3.19) or (3.20), Corollary 7.3 still holds. 

It should be emphasized that Theorem 8 is stated in  terms  of  the  original  model 
(3.17), rather than the transformed model.  This  is  useful  because the transformed  model 
is  of theoretical interest only, and is not directly  estimable. 

In  summary, if one is  only  interested  in a shift  in the intercept, or in the cointegrating 
coefficients or both, tbe break point estimator has the same distribution (more specifically, 
the scaling factor of k - ko has the same  expression)  regardless  of the existence or absence 
of drifts. The confidence  intervals for the true break point have the same form. The 
estimated  regression parameters, however,  will  have  limiting distributions different from 
those in the absence of drifts. 

4. MONTE  CARLO ANALYSIS 

This section  presents the results  of a Monte Carlo study of break date statistics  in  two 
models. The first,  which  is  motivated  by our empirical applications and based on the 
theory developed  in  Section  2,  is an Z(0) model  with a break in the intercept  only. The 
second  is a cointegrated specification  with a break  in the intercept and the cointegrating 
coefficient. This latter model  is  less  relevant for the subsequent  empirical work, but is  of 

4. If wr does not  contain lags or leads of M,, then W: = wr and p: = p  I .  
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methodological  interest  because  it  studies the finite  sample  performance  of  statistics pro- 
posed  in  Section 3. Because Monte Carlo evidence on the test  statistics (2.8)-(2.9) has 
been documented  elsewhere, attention is restricted  here to coverage rates of the asymptotic 
confidence  intervals for ko.5 

4.1. Breaks in intercepts, I(0) models 

For considering a change  in  the intercept, the data were generated  according to the follow- 
ing Gaussian autoregression 

vr=(Aln)dr([T60]) + (PL)Yr-1+ E r ,  Er i-i-d N(0, E&) (4.1) 

where z, is an n-vector  of l’s and Er is n X 1 .  Both  univariate and trivariate models  were 
studied. In the univariate  case, C, = 1. In the trivariate case, X& was  set to have 1 on the 
diagonal and p off the diagonal. 

Monte Carlo coverage  probabilities for central 80% and 90% asymptotic  confidence 
intervals for ko, constructed  using (2.20), are reported  in Table 1 for univariate models 
and Table 2 for trivariate models,6  with T =  100 and T =  400. These  tables  also report 
summary  statistics (the median and the  range  between the 5% and 95% points) for the 
Gaussian  MLE of ko. 

The results for the Monte Carlo distributions of i suggest  five  conclusions. First, the 
precision  of the MLE of ko depends  strongly on the true Yalue  of A. This  is  consistent 
with the theoretical rate discussed  in  Section 2, that is, k-ko= UP((A’Ci1A)-’). For 
example, for n = 1 and il=O.75, the 90% range  is 33 for T =  100; the median  of the Monte 
Carlo draws is i= 50 (the true value) and 90% of the estimates  approximately  fall  in 
50 f 16. Second, there does not appear to be substantial median  bias  in the Monte Carlo 
results,  either for 60=O-5 or in the one  case  in  which ljo=0.25. Third, the result  in 
Corollary 4.1 suggests that, for fixed parameters, increasing the sample  will not affect the 
precision  of the estimator, measured  in  terms  of k ;  this  prediction  is  confirmed by noting 
that the 90% rangzs  change  little, or not at all, when the sample  size  is quadrupled. Fourth, 
the precision  of k does not appear to be strongly  affected  by p. Fifth, as discussed ic  
Section 2, moving from a univariate to a trivariate system  should  reduce the range of k 
by one-third, at least if  is diagonal and Ai/(E&)ii  are the same for each equation. This 
prediction  is  borne out; for example, for A = 0.75, p = 0, and T =  100, the 90% range  is 33 
for n = 1 and is 1 1  for n = 3 ( p  = 0 case).  These  observations,  along  with  the  theoretical 
results  in  Section 2, support a conclusion  with important practical  implications. For a 
fixed A, more  precise  estimates  of ko cannot be obtained by acquiring  longer data sets; 
one must  instead use additional series that break at the  same date. We explore  these 
conclusions  in the empirical  examples of  Sections 5 and 6. 

The results  suggest that, in  general, the asymptotic  confidence  intervals  tend to have 
coverage rates less than their  confidence  coefficient; that is,  the  confidence  intervals are 
too tight. This  effect  is  more  pronounced for small than large  values  of A, and for large 
than small  values  of p (for large  values  of p, the least squares estimate of p tends to be 
downward  biased,  resulting  in the break  point  being  inaccurately estimated). For example, 
the coverage rate of the 90% interval  in the univariate  system  with A= 1 5,  p = 0, and p = 

5. An  earlier  version of this  paper contained  results  assessing  the size and  power of the  various  test  statistics 
for  a  change  in  the  mean  in  univariate  and  trivariate  models. Also see Andrews (1993) and  Andrews,  Lee,  and 
Ploberger (1996). 

6. Our  reporting of three  decimal  places does not reflect  this  level of accuracy  for  the  exact  distributions 
but  rather estimates  from  the  limited  number of Monte  Carlo  simulations. 
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TABLE 1 

Monte  Carlo  results:jinite sample coverage  rates of asymptotic confidence intervals for the  break date  ko, 
univariate  case (n = I ) .  

T=  100 T=400 

Conf. Intervals  Estimator Conf. Intervals  Estimator 
A 6o p p 80% 90% Med 90% range 80%  90% Med 90% range 

0.75 0-50 0.0 0 
0.75 0.50 0.0 1 
0.75 0.50 0-0 4 
0.75 0.50 0-0 BIC 

0.75 0.50 0.4 0 
0.75 0.50 0.4 1 
0-75 0.50 0.4 4 
0.75 0.50 0.4 BIC 

0.75 0.50 0.8 0 
0.75 0.50 0.8 1 
0.75 0-50 0.8 4 
0.75 0.50 0.8 BIC 

0.25 0.50 0.0 0 
0.50 0.50 0.0 0 
1.00 0.50 0.0 0 
1.50 0.50 0.0 0 
2-00 0.50 0.0 0 
0.75 0.25 0.0 0 

0.744 
0.728 
0.682 
0.739 

0-585 
0-706 
0.669 
0.698 

0.254 
0.626 
0.588 
0.623 

0.668 
0.698 
0.796 
0.872 
0.913 
0.775 

0-845 
0.829 
0.788 
0.839 

0.680 
0.79 1 
0.763 
0.780 

0.314 
0.719 
0.688 
0.717 

0.810 
0- 806 
0.876 
0.927 
0.947 
0.873 

50 
50 
50 
50 

50 
50 
50 
50 

53 
53 
53 
53 

50 
50 
50 
50 
50 
25 

33 
33 
33 
33 

33 
33 
33 
33 

30 
30 
30 
30 

67 
57 
19 
7 
4 

41 

0.81 1 
0.806 
0.798 
0.81 l 

0.614 
0-790 
0.777 
0.790 

0.267 
0.784 
0.770 
0.783 

0.668 
0.764 
0.82 1 
0.880 
0.927 
0.80 1 

0-895 
0.891 
0.882 
0.895 

0.726 
0-876 
0.866 
0.876 

0.3 57 
0.869 
0.855 
0- 869 

0.79 1 
0.858 
0.896 
0.939 
0.950 
0- 890 

200  30 
200  30 
200  30 
200  30 

20 1 28 
201 28 
20 1 28 
20 1 28 

203 27 
203  27 
203  27 
203  27 

201 225 
200 75 
200 18 
200 6 
200 4 
100 30 

~~ ~ ~~ ~~~ ~~ ~ 

Notes: Coverage  rates  for  asymptotic  confidence  intervals  are  respectively  reported  under  the “8Wh” and “90%” 
columns,  for  the  applicable  sample  size of either T= 100 or T= 400, where T denotes  the  number of observations 
in  each  regression.  The-median  and 90% range (the range  between  the 5% and 95% points) of the dispibution 
of the  estimator of k,   k ,  are  reported  under  the  “Med”  and “90% range”  columns.  Point  estimates k for  the 
break date were computed by  maximum  likelihood  estimation  for k = k ,  + 1 ,  . . . , T- k ,  , where k ,  = [ TS, ],6, = 
0.15. The  confidence  intervals  are  computed as described  in  the text. “p” denotes  the  autoregressive  order; 
“BIC”  means  that  the  lag  length  was  selected by  minimizing  the  BIC  over p =0,  1 ,  . . . , 6  (univariate  models) 
or p = 0, 1,2,3 (trivariate models). 4000 replications  were  performed for  each  experiment. 

0 is  93% ; for A = 0.75, p = 0.8, and p = l ,  the coverage rate is  only  72%. The choice  of 
lag  length p has at most a moderate effect on the coverage rates, except  in the case  in 
which the regression  is  misspecified (that is, p = 0 when p # 0), in  which  case the coverage 
rates are very  low. In particular, the  use  of  the BIC choice  of p rather than the true lag 
length  has  little  effect on the coverage  rates. The performance of all  the univariate intervals 
(except for the intervals constructed using a misspecified  regression)  improves  substantially 
when T is quadrupled. The confidence  intervals  perform  less  well  in the trivariate model 
than in the univariate model,  particularly  when p is  large.  Still, for all  values  of p consid- 
ered, the coverage rates of the 90% intervals for the trivariate models  exceed  78%  (except 
in the misspecified  models)  when the sample  size  is  increased to 400. 

4.2. Breaks in Z(1) models 

The data  are generated  according to (3.17),  with wt omitted, p = 0, A = a  vector  of  ones, 
= 0- 1 and Xe =I,, where Z, is an r-dimensional  identity matrix, and tt and E, are 

independent Gaussian errors, with  4000  replications.  We  consider  values  of p 1 E (0, 1.0, 
1.5, 2.0), A1€(O,  0-5, 1.0, b5),  z0~(0.25,0.5, 0.75) and YE(O,O.l, 0.2,0.4). Monte Carlo 
coverage probabilities for central 80% and 90% asymptotic  confidence  intervals for ko, 
constructed using  (3.16), are reported in  Table 3 for univariate models (n = 1) and trivariate 
(n  = 3) models,  with T =  100 and T =  400.  We focus on the confidence  intervals  in (3.16) 
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TABLE 2 

Monte Carlo resu1ts:jinite  sample  coverage rates of asymptotic conjidence  intervals for the  break date ko, 
trivariate case (n = 3)  

T= 1 0 0  T =  400 

Conf. Intervals  Estimator Conf. Intervals  Estimator 
A So p p 80% 90% Med 90% range 80%  90% Med 90% range 

0.50 0.50 0.0 0.0 0 
0.50 0.50 0.0 0.0 1 
0.50 0.50 0.0 0.0 BIC 

0.50 0.50 0.4 0.0 0 
0.50 0.50 0.4 0.0 1 
0.50 0.50 0.4 0-0 BIC 

0.50 0.50 0.8 0.0 0 
0.50 0.50 0.8 0.0 1 
0.50 0.50 0.8 0.0 BIC 
0.50 0.50 0.4 0-5 0 
0.50 0.50 0.4 0.5 1 
0-50 0.50 0.4 0.5 BIC 

0.25 0.50 0.0 0.0 0 
0.50 0.50 0.0 0.0 0 
0.75 0.50 0.0 0.0 0 
1.00 0.50 0.0 0.0 0 
1.50 0.50 0.0 0.0 0 

0.692 
0.658 
0.685 

0.555 
0.625 
0.613 

0.237 
0.446 
0.436 

0.42 1 
0.512 
0.50 1 

0.483 
0.705 
0.815 
0.883 
0-948 

0.793 
0.757 
0.785 

0.637 
0.719 
0.707 

0.262 
0.525 
0.515 

0.527 
0.619 
0.609 

0.61  1 
0.791 
0.890 
0.930 
0.976 

50 
50 
50 

50 
50 
50 

53 
53 
53 

51 
51 
51 

50 
50 
50 
50 
50 

31 
31 
31 

30 
30 
30 

28 
28 
28 

52 
52 
52 

64 
30 
11 
6 
2 

0.797 
0.788 
0.797 

0-625 
0.776 
0.776 

0.247 
0.722 
0.722 

0.563 
0.726 
0.725 

0.67  1 
0-802 
0.856 
0.898 
0.949 

0.886 
0.88 1 
0.887 

0.722 
0.865 
0.865 

0.314 
0.82 1 
0.820 

0.673 
0.827 
0.825 

0-779 
0.89  l 
0.917 
0.944 
0.983 

200  23 
200  23 
200  23 

200  25 
200  25 
200  25 

203  21 
203  21 
203  21 

200  51 
200 51 
200  51 

200  127 
200  23 
200  10 
200 6 
200 2 

Notes: 40oO replications were  performed  for  each  experiment.  See  the notes to Table 1. 

because  they are the most  general  in that they  allow for a change  in  any or all  of  the 
coefficients  in the regression. 

The  main  conclusions  from  Tables l and 2 hold  in  Table 3. In addition, in  this DGP, 
when the data generating  process contains only a shift  in the mean, the precision  of the 
confidence  interval deteriorates when the break  occurs  near  the  ends  of the sample; this 
sensitivity  is  less apparent for the trivariate case (as seen  by comparing  lines 1, 4 and 5 
of  Table 3). Also,  when  the  break  occurs  in  the  regression  coefficients, AI,  the  theoretical 
predictions of (3.1 1) suggest that the break date should be estimated  more  precisely  the 
later the break  occurs  in  sample.  This  is  because the magnitude  of the regressors  is  larger 
when ko is  larger. This prediction  is  confirmed  in the simulations; this  is  seen by comparing 
lines 12 and 13 or lines 18 and 19 of  Table 3. 

The results  suggest that, for breaks of  small  magnitude,  the  asymptotic  confidence 
intervals  tend to have  coverage rates less than their  confidence  coefficient; that is, the 
confidence  intervals are too tight. For example,  the  coverage rate of the 90% interval  in 
the univariate system  with p I = 1-5, A1 = 0, and Y = 0 is 89% ; for p 1 = 1.0, the coverage 
rate is  only 78%. However the performance of all  the  univariate  intervals  improves substan- 
tially  when T is quadrupled. 

In summary,  these  results  indicate that the asymptotic  theory  provides a good  basis 
for the construction of break date confidence  intervals  in  these  designs,  when the break 
is  of moderate size. 

5 .  EUROPEAN  OUTPUT  GROWTH 

Although a slowdown  in the growth of output in European economies is widely acknow- 
ledged, formal dating of this  slowdown has been  hampered by the lack of appropriate 
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TABLE 3 

Monte  Carlo  resu1ts:finite sample coverage  rates of asymptotic confidence intervals for the break date  ko, 
univariate case (n = I )  and trivariate case (n  = 3)  with I( I )  Regressors. 

n =  1 n = 3  
Conf.  Intervals  Estimator  Conf.  Intervals  Estimator 

p I A I  ro Y 80%  90%  Med  90% range 80%  90%  Med 90% range 

T= 100 
1.5 0.0 0.50 0.00 
1.0 0.0 0.50 0.00 
2.0 0-0 0.50 0.00 
1.5 0-0 0-25 0.00 
1.5 0-0 0.75 0.00 
1.5 0.0 0.50 0.01 
1.5 0.0 0.50 0-02 
1.5 0-0 0.50 0.04 

0.0 1-0 0.50 0.00 
0.0 0.5 0.50 0-00 
0-0 1.5 0.50 0.00 
0.0 1.0 0-25 0.00 
0-0 1.0 0-75 0.00 
0-0 1.0 0.50 0.01 
0.0 1.0 0.50 0.02 
0-0 1.0 0.50 0.04 

1.0 1.0 0.50 0.00 
1-0 1.0 0.25 0.00 
1.0 1-0 0.75 0.00 
1-0 1.0 0.50 0.01 
1.0 1.0 0.50 0.02 
1.0 1.0 0-50 0.04 

T=400 
1.5 0.0 0.5 0.00 
1.5 0.0 0.5 0-04 
0.0 1.0 0.5 0.00 
0.0 1.0 0.5 0.04 
1.0 1.0 0.5 0.00 
1.0 1.0 0.5 0.04 

0.83 1 
0.710 
0.901 
0.803 
0.810 
0-833 
0.819 
0.830 

0.824 
0.730 
0.877 
0.813 
0.833 
0.841 
0.862 
0.91  5 

0.838 
0.820 
0.842 
0.859 
0.883 
0-939 

0.867 
0.863 
0.906 
0.984 
0.906 
0.987 

0.887 
0.780 
0.938 
0.854 
0- 860 
0.883 
0.874 
0.879 

0.854 
0.787 
0- 898 
0.850 
0.861 
0.868 
0.885 
0-929 

0.863 
0.852 
0.868 
0.885 
0.903 
0.951 

0.932 
0.922 
0.919 
0.987 
0.923 
0.988 

50 9 
50  37 
50 4 
25  17 
75  17 
50 10 
50 11 
50 11 

50  20 
50  50 
50 10 
25  32 
75  21 
50 19 
50  17 
50 8 

50  18 
25  30 
75  18 
50 16 
50  12 
50 4 

200  7 
200  8 
200 8 
200 0 
200  8 
200 0 

0.929 0.939 
0.770 0.804 
0.983 0.985 
0.909 0-9 19 
0-912 0.921 
0.932 0.944 
0.928 0-936 
0.930 0.936 

0.847 0.867 
0-723 0.754 
0-890 0-901 
0.813 0.842 
0.857 0.873 
0.862 0.877 
0.872 0.885 
0-925 0.937 

0-865 0.883 
0.833 0.855 
0.866 0.878 
0.886 0.898 
0.903 0.914 
0.957 0.962 

0.949 0.956 
0.952 0.955 
0.916 0.929 
0.990 0.990 
0.926 0.935 
0.990 0.991 

50 
50 
50 
25 
75 
50 
50 
50 

50 
50 
50 
25 
75 
50 
50 
50 

50 
25 
75 
50 
50 
50 

200 
200 
200 
200 
200 
200 

2 
8 
1 
3 
3 
2 
2 
2 

9 
33 
4 

13 
8 
8 
7 
3 

8 
11 
8 
7 
6 
0 

2 
2 
3 
0 
4 
0 

~~ ~~ ~~ ~ 

Notes: 4000 replications were performed for each experiment. See the notes to Table 1. 

statistical techniques. We therefore turn to the task of dating this slowdown. The starting 
point for this investigation is the observation by  Banerjee,  Lumsdaine and Stock  (1992) 
that  output in France, Germany, and Italy each  appeared to be  difference stationary, but 
that there appeared to be  a  break in the mean  growth rate  for each country during the 
sample. Their analysis was strictly univariate, and the results of the previous sections  show 
that there can  be substantial gains from  using multivariate inference about the break dates. 
Specifically, we are now  in  a position to address three empirical questions. First, what are 
confidence intervals for the break date when the series are treated individually?  Second, 
is there evidence that these breaks occurred at the same  time? Third, if so, what are the 
interval estimates of the break date, when the date is  modelled as common across these 
three countries? 

We  use  Banerjee,  Lumsdaine and Stock’s  (1992) data  for comparability to their study. 
The three European  series are the logarithms of quarterly GDP for France and Italy and 
GNP for Germany. We also examine the logarithm of quarterly GDP for the U.S. Because 
the data  are available over  different periods, the system results examine the joint behaviour 
of output over only a short common period, 1962: 1 to 1982 :4. The data and data sources 
are described  in  more detail in  Banerjee,  Lumsdaine, and Stock  (1992). 
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Banerjee,  Lumsdaine, and Stock  (1992)  tested the null hypothesis that each  of  these 
series had a unit root, against the alternative that the series  was stationary around a linear 
time trend, possibly  with a break  in the time trend at an unknown date. The univariate 
analysis of  these  European output  data provided no evidence against the unit root null 
hypothesis; based on these earlier findings, we proceed  under the assumption that each 
series  is I (  l), possibly  with  a  change in drift, so that each  differenced  series  is  modelled 
as having the univariate stationary autoregressive representation (2.1), where y t  is the 
growth rate of output, X t  is omitted (there are  no exogenous variables), and pj=O, j =  
l ,  . . . , p ;  the break  term corresponds to a shift  in the mean  growth rate of output. The 
series are modelled as jointly having the stationary autoregressive representation (2.1), 
where y t  is interpreted as the vector  of  growth rates of output of the various countries 
and X t  is omitted. 

TABLE 4 

Empirical  results:  European  output 

Country  Sample Sup  W- 1 P! Exp- W- 1 5% L W h  Conf. Int. 

A .  Univariate 
France 64:4-89:2  23-68 

(0. 00) 
Germany 51 :C89:2 21.68 

(0.00) 
Italy 53:4-82:4 10.30 

(0.03) 
U.S. 48 : 4 8 9  : 2  1.42 

(0.91) 

B.  Bivariate  and  Trivariate VAR Systems 
F, G 64 : 2-89 : 2  26.00 

(0.W 
F, 1 64:2-82:4 17-97 

(0.00) 
G, 1 53 : 2-82:  4 14.98 

(0.02) 
F, G, 1 6 4 :  1-82:4 19.43 

(0.01) 

74:2 

61 :2 

74: 3 

68:4 

75: 1 

73:4 

74: 1 

73:4 

(72:4,75:4) 

(59:1,63:3) 

(70:2,78:4) 

(<47: 1 ,  >89:2) 

(73:3,76:3) 

(72: l ,  75:3) 

(71 : 1,77: 1) 

(72:2,75:2) 

Notes: p-values,  computed  using  the  asymptotic  distributions of the  relevant  test statistic, are 
given  in  parentheses; 0.00 denotes  a  p-value  less than 0.005. The  sample  period  denotes  the 
period  over  which  the  regressions  were  run ; earlier observations were  used  for  initial conditions. 
All  lag  lengths  were  selected  using  the  BIC,  with a minimum of one  lag  and  a  maximum of 6, 
4, and 3 lags,  respectively  for  the I-, 2-, and  3-variable  systems. In each  model  the  BIC  criterion 
picked  p = 1 .  

Change-point statistics for European and U.S. output  are presented  in  Table  4. For 
France and Germany, treated as univariate series,  both of the test statistics rejects at the 
1% level; for Italy, both  reject at the 5% level. The point estimates of the break date  are 
in  1974 for France and Italy, although for Italy the estimate is  imprecise. For Germany, 
the 90%  confidence interval for the break  is (59: 1,63 : 3). In contrast,  for U.S. output the 
hypothesis of a constant mean  growth rate  cannot be  rejected at the 10%  level  using  any 
of the tests. The 90%  confidence interval for the U.S. is so wide that it contains the entire 
sample period. Because  of the insignificance  of the break statistics for the U.S., we postpone 
further analysis of the U.S. data until the next section. 

The univariate evidence  is consistent with  France  and Italy having  a  contemporaneous 
break and with there being no identifiable  break  in the U.S. It is  less  clear  whether  Germany 
has a break at the same  time as France  and Italy; although the confidence intervals for 
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the break  date do not overlap, the F-stastic for Germany  is  large throughout the  mid- 
1970s. Indeed, this F-statistic takes on a local  maximum  of  17- 52 in 1970 : 2,  which  exceeds 
the 5% critical  value for the sup W statistic.  Although  the  results are therefore  somewhat 
ambiguous, we interpret this as broadly supporting an exploration of multivariate models 
including  these three countries with a common break date. 

Results of the multivariate analysis are reported in  panel B of Table 4.  Consider  first 
the France-Italy  system, for which the univariate evidence  is  most  consistent  with a single 
common  break date. The test statistics reject the hypothesis of no break in the mean 
growth rate against the alternative of a break  in  the  mean at a common break date; the 
90%  confidence interval of  1972 : 1 to 1975 : 3 is  similar to  that for France alone and tighter 
than the interval for Italy. The other bivariate  systems  also  reject the null  of no break against 
the common-date alternative, providing support for proceeding to construct interval  esti- 
mates for a common break date including  Germany  in the system. The tests  reject  the  null 
of no break against the common-date alternative in the trivariate system and, consistent  with 
econometric theory and  Monte Carlo results,  inference  is  most  precise  in  this  case : the break 
is  estimated at 1973 : 4 with a 90%  confidence  interval  of  1972 : 2 to 1975 : 2. 

This multivariate analysis points to a slowdown  in European  output which  occurred 
approximately simultaneously  in France  and Italy and, arguably, in  Germany as well. 
When data on  output growth  in  all  three countries are used at once, the break date is 
sharply estimated to be in the early 1970s.  Of course, this dating coincides  with  conven- 
tional wisdom; the contribution here  is that this date can now  be  associated  with  the 
formal measure  of uncertainty provided by a tight 90%  confidence  interval spanning 
slightly  more than three years. 

6.  U.S. OUTPUT,  CONSUMPTION, AND INVESTMENT 

Because the univariate results for U.S. output  do not provide sharp evidence  either  in 
favour of or  opposing the one-break  model,  in  this  section we extend the investigation to 
include  multiple  time  series,  in particular, consumption, income and investment.  One 
rationale for using  this trivariate system  is that a range  of  models of long-run stochastic 
growth suggest that a permanent shift  in the average  growth rate of productivity will  result 
in permanent shifts  in the mean  growth rates in  each  of the series.  This  arises from the 
three series sharing a common stochastic trend (productivity) and thus being cointegrated. 
Even though the shift  in the mean  growth rate might  be  statistically  insignificant  using 
just  output, the break might  be  more  readily  detected and estimated if consumption  and 
investment are used as well. 

6.1. Theoretical  preliminaries 

Theoretical arguments for the cointegration of  these  series are made  in  King,  Plosser, and 
Rebelo (1988). In brief,  in  their  model, a representative  firm  produces  according to a 
Cobb-Douglas production function with constant returns to scale and total factor produc- 
tivity  follows a random walk  with drift. Then  the logarithm of output,  consumption,  and 
investment  each inherits the stochastic trend in productivity; each  series  is I (  l) ,  and the 
logarithm of the consumption/output  and investment/output ratios are stationary. As 
discussed  in  King,  Plosser, Stock, and Watson  (1991),  this  system  has the common trends 
representation 

Yt=q5+Dz,+u,,  (6.1) 
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where Yt is the vector  of the logarithms of output, investment, and  consumption,  and 4 
and D are 3 X 1 vectors, zt  is  the common stochastic trend, and ut is an additional I ( 0 )  
disturbance. The common  trend zt  is a scalar,  which  in the King-Plosser-Rebelo (1988) 
model  is  the logarithm of total factor productivity.  The  vector D is  defined (up  to scale) 
by a'D = 0, where a is  the  matrix of cointegrating  vectors ( a  = ( a  1 ,  a2)) ; in  the  King- 
Plosser-Rebelo (1988) model, a = (1, - l ,  0) ,  a2 = (1,0, - l), and D = (1, l ,  l)'. In general, 
for Yt an n-vector  with r cointegrating  vectors, D is n X (n  - r )  and is  defined  by a'D = 0 
up to postmultiplication by a nonsingular (n  - r )  X (n  - r )  matrix. The I ( 0 )  disturbance ut 
represents  measurement error and/or additional unmodelled short-run dynamics  of the 
~ys tem.~  

We extend the King-Plosser-Rebelo (1988) model to incorporate the  possibility_of a 
one-time  shift  in  the  average  growth rate of productivity  from /i for t <  ko to + A for 
t 2 ko.  Specifically, zt  is  assumed to evolve  according to 

z t = / i + ~ d , ( k o ) + z t - l + q t ,  (6.2) 

where qt is a martingale  difference  sequence.  This  results  in a change  in  the  growth rates 
in  each of the series at date ko.  

To apply the tools  developed  in  Section 2, (6.1) and (6.2) must  be  re-expressed  in 
the form (2.1). The univariate representation for the i-th  series is obtained by combining 
(6.1) and (6.2) in  first  differences,  which  yields A K t =  Dip + DiAdt(ko) + V i r ,  where vir= 
Diqt+  Auit. We further suppose that the I ( 0 )  disturbance Vir follows an autoregressive 
representation, = (1 - ai (L)L)-'cit ,  where cif is  serially  uncorrelated.  Then A has the 
univariate representation 

AYit=pi+Aidt(ko)+ai(L)AYit-1+dz(ko)DiI+cit, (6.3) 

where p i = ( l  -ai(l))DiP, & = ( l  -a i ( l ) )DJ,  and dz(k)=a)(L)Ad, (k) ,  where a t  = 
-c,"=. aim. It is  assumed that E,?' lai, I < co for each i. Under this assumption, the 
term 4: (ko)Dii  has asymptotically negl~gible effects on the  regression estimates; we omit 
it and thus have 

AYIt=pi+Aidt(ko)+ai(L)AY,t-l+cit. (6.3') 

In the empirical application, ai(L)  is  assumed to have  finite order (p) .  
Just as there are multiple  representations of cointegrated  systems (cf. Engle and 

Granger (1987)), there are various  ways to rewrite (6.1) and (6.2) in  the form (2.1). One 
such representation is the vector error correction  model  (VECM).  Following a standard 
derivation of the  VECM  model (cf. Watson (1994)), modified for the  break  model (6.2), 
we obtain 

which  is  of the form (2.1) with X t  = a'Y,- . (To obtain (6.4) we have dropped the transient 
term  which  is  the  multivariate counterpart of the univariate  term dropped to obtain (6.3') 
from (6.3).) Thus (6.4) is a VECM  modified to admit the possibility  of a break  in  the 

7. The  King-Plosser-Rebelo  model  is  not  the  only  model  that  produces  a  representation  such  as (2.3) for 
the  major  aggregates.  For  example,  Sargent  (1989)  derives (2.3) as  the  reduced form of a  linear-quadratic 
optimization  model  with  an  investment  accelerator.  In  Sargent's (1989) model, Yf is  income,  consumption,  and 
investment, U, is  modelled  explicitly  as  measurement  error,  and r,  is  a  smooth  average of past  productivity 
innovations. In  Sargent's  model r f  is stationary  with  an  autoregressive  root close to but  less  than  one.  In  general 
uf and Arf can be correlated.  In  Sargent's model,  this  correlation  arises  from  the  data  construction  operations 
of the  economic  statistics  agencies. 
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growth rate of the common stochastic trends. Note  that, in  this representation, the  break 
enters only through a shift  in the intercept  term. 

An alternative representation is obtained by noting that because a'D = 0, (6.1) and 
(6.2) can be rewritten  in  terms of a' Y, and AD' Y, : 

a'Y,=a'#+u:, (6.5a) 

A D  Y, = D'Dji + DDid,  (ko) + v:, (6.5b) 

where U: = a'u, and U: = D'Dq, + AD'u, . The  form used  here adopts a triangular decomposi- 
tion of u, as in  Phillips ( 1991) and Stock and  Watson ( 1993).  Let U: = P( U: I uf , 
of* 1 ,  . . .) + G:, where P( I ) denotes the linear projection, so that 5: is  uncorrelated  with 
all  leads and lags  of v: . In general, 0: has a Wold representation, which  is  written  here  in 
the autoregressive form G: = { I -  F(L)L}-' a,. In addition, the linear  projection can be 
written, P(v: I U:, U:, . . .) = B(L)u: = B(L)(a' Y, - a'#), where &L) is  in  general  two- 
sided. Upon substituting these  expressions into (6.5b) and letting Yl = D' Y, , one obtains 
the modified triangular representation 

A YT = p  + Ad, (ko)  + D!(ko) i  + F(L)A Yl- + B(L)(a' U,- ) + c o t ,  (6.6) 

where p = ( I -  F(l)}(D'Dp -&l)a'#), B(L) = ( I -  F(L)L}B'(L), A= ( I -  F ( l ) } D D i ,  and 
Dl(k)  = F*(L)DDAd,  (k),  where F; = -C,:j Fi. As in the univariate and VECM  represen- 
tations, the transient DT(ko) is omitted. Thus, the modified triangular form  considered  is 
the system  composed  of  (6.5a) and 

A Yt  = p  + M, (ko )  + F(L)A Yf- + B(L)(a' Yt- ) + c o r .  (6.7) 

In the King-Plosser-Rebelo  (1988)  model, D = (1, 1, l)' so Yf is the sum of the 
logarithms of output,  consumption,  and investment. The system  (6.5a) and (6.7)  will  be 
referred to  as the modified triangular representation. 

In the modified triangular form, the break appears in  only the second  block  of equa- 
tions, (6.7). By construction, w, is  serially uncorrelated, is uncorrelated with v: at all  leads 
and lags, and is uncorrelated with the regressors. The  Gaussian  MLE for il and ko is 
obtained, asymptotically,  simply by estimating  (6.7) by ordinary least  squares.  Because 
(6.7)  is  of the form (2.1)  with X,-1 being a' Yt- and its lags, the tools of Section 2 can 
be applied to (6.7). A practical advantage of this representation over  the  VECM  is that 
the number of equations in  (6.7)  is the dimension of z, (in our case, one), less than the 
number of equations in the VECM representation (6.4).8 

The discussion so far has assumed that the  matrix of cointegrating vectors a is  known. 
If the cointegrating vectors are unknown, a can be  replaced  by any T-consistent estimator 
6 and the asymptotic results of Theorem l will  be unchanged. The argument  here  is 
standard and relies on the fast rate of  convergence  of estimators of the cointeeating vector 
(_e.g. Stock  (1987)).  Similarly,  because 6 is  consistent for a,  the estim_ator 0, formed by 
D'& = Q  will  be consistent and Y! = AD'Y, in (6.7) can be  replaced  by rf =AD' Yt and the 
same asymptotic results obtain. 

6.2.  Empirical  results 

The data used  here are total  realper capita GDP, total realper capita  personal consumption 
expenditures, and  total real per capita  gross  private  domestic fixed investment for the 

8. The  representation (6.7) could  alternatively  have  been  derived  starting  with  any  linear  combinations of 
Y, that  are  integrated  and  not  cointegrated,  rather  than rf . Because  leads  and  lags of a'Y, are  included  as 
regressors  in (6.7), however,  any  such  representation  can be  rearranged to yield  the  representation (6.7). 
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United States, quarterly, 1959 : 1-1995 : IV.  All real series are chain-weighted quantity inde- 
xes. The quantity indexes are  put on  a per capita basis  by  dividing  by the total civilian 
noninstitutional population aged  sixteen  and  over. Historical revisions  of the quantity 
indexes  before  1959 are  not available at the date of this writing, so the full  sample  is 
1959 : 1-1995 : IV.  Logarithms of all series are used throughout. Regressions are all  run 
over shorter periods to allow for initial conditions. 

The  empirical analysis proceeds in  two  steps. First, we investigate the unit root and 
cointegration properties of the series, taking into account the possibility that there might 
be shifts in  mean  growth rates and further investigating  whether the cointegrating 
coefficients  (if any) were stable over this period. We conclude that the evidence  is consistent 
with  these  series  being  individually integrated and jointly cointegrated, and  that the cointe- 
grating coefficients appear to have  been constant. Second, we turn to  an investigation of 
whether there were breaks in the mean  growth rates and, if so, when  they occurred. This 
is  done  both for the individual series and  as a  system, both using estimated cointegrating 
coefficients  and  using the unit coefficients  suggested  by the King-Plosser-Rebelo  (1988) 
model.  The analysis of this section  is  based on the I ( 0 )  framework  of  Section  2 rather 
than Section 3 because no shift in the cointegrating relationship is  allowed. 

Unit  root and cointegration  analysis. 

The preliminary unit root  and cointegration analysis here  mainly  uses standard techniques, 
so we provide only  a  brief  summary  of the results.  Because we are investigating the 
possibility  of a change  in the mean  growth rate in the series, as Perron  (1989) pointed 
out,  standard unit root tests such as the Dickey-Fuller  (1979)  test are inappropriate and 
can  lead to spurious acceptance. Therefore univariate unit root tests were performed  using 
the Banerjee-Lumsdaine-Stock ( 1992)/Zivot-Andrews ( 1992)  minimal sequential ADF 
test, maintaining the hypothesis of a possible  break in the mean  growth rate. Using either 
a lag length chosen  by the BIC or a fixed lag length  of  4, for GDP and consumption, the 
tests failed to reject the unit root null at the 10%  level; for investment  they  rejected at the 

Conventional multivariate and system-based tests for cointegration have  well  docu- 
mented and pervasive  problems  with  low  power and large size distortions (Haug (1996)), 
making  them unreliable. On the other  hand, the standard univariate augmented  Dickey- 
Fuller ( 1979)  t-test  with  lags  chosen  by  BIC has good  size properties; cf. Stock ( 1994). 
Because suitable candidate cointegrating vectors are available in our application, this 
provides a desirable alternative to conventional system-based tests for cointegration (as 
do the tests  developed  by  Horvath  and  Watson  (1995),  although those are  not pursued 
here). We therefore tested for cointegration by  using the Dickey-Fuller  (1979) t-statistic 
(including a constant and time trend)  to test the null  of a unit root for c - y, i- y,  and 
c - i, which are the cointegrating relations implied  by the King-Plosser-Rebelo theory. 
Using either lags  selected  by  BIC or a fixed  lag length of four, the unit root null  is  rejected 
at the 10%  level for each  of the three error correction terms, with the exception  of i-y 
with  BIC  lags.  Using the demeaned  Dickey-Fuller  (1979) t-test, the unit root null  is 
rejected at the 10%  level  using either lag  choice for i- y and c - i, but not for c - y. 
Although  these tests do not incorporate modifications for possibly  broken  time trends in 

' 10% but  not 5%  level.' 

9. This  test  statistic  is  the  t-ratio  testing  the  hypothesis of a  unit  root  when  the  deterministic  terms  include 
a  constant,  a  time  trend t ,  and ( t - k ) l ( t - k ) ,  minimized  over  all k with 15% trimming  at  the  beginning  and  end 
of the  sample.  For  lags  selected  by  the BIC, the  test  statistics  were -3.62 (GDP), -3.91  (consumption),  and 
-4-38 (investment);  the 10% (5%) critical  value  is -4.20 (-4.48). 
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the series,  Perron's  (1989)  problem of spurious acceptance  would  work  against  finding 
cointegration using  these  tests.  Because, for these data, the  tests  typically  reject  in favour 
of cointegration, this  concern  is not relevant. 

The cointegrating coefficients  were  estimated  by the Stock-Watson  (1993)  Dynamic 
OLS  (DOLS) estimator, both in  single equation and system  forms." The results  used  here 
are for the system  normalized so that the coefficients are of the form c - O1y and i - Ou . 
For the DOLS estimator with 2 leads and lags  with an autoregressive estimator of the 
spectral density  (with .Ilags), we obtain the estimated  coefficients and standard errors, 
O1 = 1.187  (0.032) and O2 = 1.242 (0- 164). Although the hypothesis that 02= 1 cannot be 
rejected at the 10%  level, it is  easily  rejected that O1 = 1.  This  gives  rise to some  ambiguity 
in  these results; the DOLS procedure rejects 81 = 1, but the series y - c appears integrated 
of order zero  using the Dickey-Fuller  t-test.  This  ambiguity  might  be  explained by the 
results  of Horvath  and  Watson (1999, which  suggest that tests for non-cointegration with 
a prespecified cointegrating vector can have  good  power  even  when the cointegrating 
vector  is  slightly  misspecified. 

Finally, the Gregory-Hansen  (1996) statistic was  used to test the null of a cointegrat- 
ing relation with constant coefficients  against the alternative that either the intercept or 
the slope  coefficient changed; for both the ( y ,  c) and ( y ,  i) systems,  these  tests  fail to 
reject the null at the 10%  level,  using  either four lags or lags  selected  by  BIC.  We  conclude 
that these three variables can be  modelled as cointegrated  with  two  stable cointegrating 
vectors. 

Evidence of breaks in  mean growth  rates. 

Break  test statistics are summarized  in Table 5.  All  lag  lengths  were  determined  using the 
BIC,  searching  between 1 and 6 lags for the univariate models, 1 and  4 lags for the 
bivariate models, and 1 and 3 lags for the trivariate models. 

When  considered  individually,  the  hypothesis of a constant mean  growth rate cannot 
be  rejected at the 5% level for any of the three  series.  Accordingly, the associated  estimates 
of the break date are very  imprecise,  with  confidence  intervals spanning at least  twelve 
years. 

Results for multivariate systems,  with  cointegrating  coefficients  estimated  using the 
DOLS estimator, appear in  panel B of Table 5. Both the mean  shift  tests  reject at the 10% 
level for the (c, i) system and the Sup- W test  rejects at the 10%  level for the ( y ,  i )  system. 
Both  tests  reject at the 10%  level in  the trivariate VECM, and at the 5%  level  using the 
( y ,  c, i) triangular form. Although the estimated  intervals are imprecise  in the bivariate 
systems, the trivariate estimators yield shorter confidence  intervals,  consistent  with the 
theoretical predictions.  Moreover, the point estimates of the break dates are the same, 
and the confidence  intervals are comparable, using  either the triangular form  or the  VECM. 
The confidence intervals suggest that the  break date occurred  in the late 1960's or early 
1970's. Consistent  with the results of the Gregory-Hansen  tests, no mean  shift  is apparent 
in the estimated error correction terms, a finding that further supports the interpretation 
of the breaks being  in the mean  growth rates of the series rather than in  the  intercepts or 
slopes of the cointegrating equations. 

As a check on these  results,  break statistics were also computed when unit cointegrat- 
ing  coefficients were imposed; the results for the trivariate models are summarized  in  panel 
C of Table 5. The break dates estimated  in the trivariate systems are the same as when 

10. Although  this  estimator  is  efficient  only  if  there  is no intercept  shift,  it  is  consistent  whether or not 
there  is  an  intercept shift. 
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TABLE 5 

Empirical  results: U. S. output, consumption  and  investment 

Series P SUP W- l 5% EXP- W- 1 5% 12 90% Conf. Int. 

A .  Univariate 

Y 1 5.51 
(0- 19) 

c 1 6.79 
(0.11) 

(0.67) 
i l 2.43 

B. Multivariate, with estimated cointegrating coeficients 
C- 1-187~  1 3.25 

(0.49) 
i - 1.242~ 3 3.14 

c-0-881i 3 6.07 
(0.52) 

(0- 16) 
y , c ,  VECM 1 9-48 

(0.12) 
y ,  i, VECM l 10- 69 

(0.08) 
c, i, VECM 2 11-10 

(0.07) 
y ,  c, i, VECM 1 14- 12 

(0.05) 
y ,  c, i, Triangular form 1 10.22 

(0.03) 

C. Multivariate, with unit cointegrating coeficients imposed 
y ,  c, i, VECM 3 22-6 1 

y ,  c, i, Triangular form 1 14.48 
(0.01) 

(0.01) 

0.97 
(0.20) 
1.61 

(0.09) 
0.27 

(0.68) 

0.38 
(0.55) 
0.47 

(0.46) 
1  -46 

(0.11) 
2.49 

(0.12) 
2.56 

(0.11) 
3- 24 

(0.06) 
3.97 

(0.07) 
2.47 

(0.04) 

7.79 
(0.01) 
3.61 

(0.01) 

66: 3 

69: 1 

66: 3 

69: 3 

88:  1 

88: 1 

69:3 

67:3 

89:2 

69: 1 

69: 1 

69: 1 

69: 1 

(60:2,72:4) 

(62:3,75:3) 

( 4 9 :  l ,  80:4) 

( 4 9 :  1,84:2) 

(75:4, >95:4) 

(82:3,93:3) 

(64:4,74:2) 

(64: 1,71: 1) 

(86:4,91:4) 

(66:2,71:4) 

(65: 1,73: 1) 

(68:3,69:3) 

(68: 1,70:4) 

Notes: y ,  c, and i refer to the logarithms of  real per  capita GDP, personal  consumption  expenditures and gross 
domestic  private  fixed  investment.  Lag  lengths p for  the regression,  chosen by BIC, are given  in  the “p” column. 
In the  triangular form, the BIC  chose p = 1 with  one  lead,  one  lag, and a  contemporaneous  term of the co- 
integrated  series a’ y,- l ,  for  both  the estimated and  the imposed  unit  cointegrating  vectors. See the notes to 
Table  4. 

the cointegrating coefficients  were  themselves estimated, but the confidence intervals are 
notably tighter. A caveat on interpreting the results in panel C as strong evidence  of  a 
precisely estimated break  in the late 1960s  is that the consumption/income ratio drifted 
up during 1959-1995 from 63% to 67%. This increase  is  reflected  in  a cointegrating 
coefficient  in the consumption/income relation that is statistically significantly greater than 
one, a  value inconsistent with  economic theory in the long run. This upward drift in the 
consumption/income ratio might  result  in the break  becoming spuriously more  significant 
in the system  VECM. This upward drift is not evident, however,  in the cointegrating 
residual c - 1 187y.  We therefore interpret the results in panel C as consistent with the 
results in panel B, although  in our judgment the wider  confidence intervals in panel B are 
more  reliable. 

Taken together these results provide evidence  of a break  in the mean growth rates of 
U.S. income,  consumption and investment. From 1959: I to 1969: I, U.S. income per capita 
grew at 3.0% annually; from 1969 : 11-1995 : IV,  it  grew at 1.1% annually. When the series 
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are considered  individually,  this  break  is not statistically  significant  once  one  allows for 
an estimated break date, but it is  when the  series are treated as a cointegrated  system. 
The system estimators date this  break  with  some  precision as occurring  in  the late 1960s 
or the early  1970s. In contrast to the results for European output, all the 90%  confidence 
intervals for the trivariate systems  fall  before the oil  shocks of the  mid-1970s. 

7. CONCLUSIONS 

In both the European  and U.S.  cases,  the  use  of  multiple  series  sharpened the inference 
about the existence and dates of  shifts in the  mean  levels. In the European  data, there  is 
strong evidence  of a slowdown  in the average  growth rates of real output in the early 
1970s,  with a confidence interval that includes the first OPEC oil  shock. This slowdown 
appears to have  occurred  approximately  simultaneously  in France, Germany, and Italy. 
The interpretation of the results for the U.S.  is,  however,  less  clear.  While  most  of the test 
statistics reject the no-break hypothesis  in the four trivariate specifications  considered, 
the estimated  confidence interval is  centred around 1969.' This evidence  argues  against 
conventional associations of the slowdown  in  growth  in the U.S. with the oil  shock. 

APPENDIX 
Proof of Theorem 2. 

To prove  Theorem  2, we first establish a series  of  properties for sequential  pseudo-likelihood  ratios and sequential 
estimators to be  defined  below  in the absence of structural change. We then  show that Theorem  2  can  be  derived 
as a  consequence of these  properties. To begin  with,  let 

y l = ( v ; w e 0 + & , ,  
where V; = (l', yi- l , . . . , y ;  - p ,  X; - l ), eo = Vec (p, A , . . . , A,, r ), and  the  are martingale  differences  with 
variance Co. This model is the same as (2.2)  but  without  a  break. 

Let (eo, C O )  denote  the  true parameter.  Consider the pseudo-Gaussian  likelihood ratio based on  the first 
k observations 

Y(I, k; e, C)= n:=1 f (YIIYI- l ,  * .  ; eo + T-1/28 ,  CO + T-1'2C) 
n L  f ( -Y l ly l - l , .  . . ; eo,zo) 

where &,(e) =y l -  ( V:@Z)(eo+ T-' l28)  = cl-  T-1/2(  V;@Z)e.  We shall call the above the pseudo-sequential  like- 
lihood  ratio. Denote by and &, the values  of 8 and C that 9( 1, k; 8, C) achieves its maximum.  Then we 
have : 

This  property says that  the sequential  likelihood  ratios and the  sequential  estimators are bounded  in  probability 
if a  positive  fraction  of  observations are used.  This  result  is  a  direct  consequence  of the functional  central  limit 
theorem for martingale  differences.  We thus omit the proof. The next  property  is  concerned  with the supremum 
of the likelihood ratios over  all k and over the whole  parameter  space. 

11.  Also,  there  is  some  evidence that the  source  of the detected  break  is  not a decline  in the mean  growth 
rate but  instead  highly  persistent  shifts  in the share of output allocated to consumption and, possibly,  investment. 
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Property 2. For each E > 0, there exists a B> 0 such  that for large T 

This  property  says that  the log-valued  pseudo-sequential  likelihood ratio  has its maximum  value  bounded by 
O,(log T ) .  

where 

Thus by adding  and subtracting an identity  matrix, we obtain 

where q, = with Eq, = 0 and Var ( q , )  = I .  The above  is  equal to, upon  Taylor  expansion 

- t tr <X:=, (qrq;- I I ) )+  4 tr (a&), (A.3) 

To prove  Property 2, it suffices to show the above is  O,(log T )  uniformly  in k.  By the strong law  of  large 
numbers, Ilk xf= l V,?': converges to a  positive  definite  matrix as k+co ; this  implies 
II( Ilk If= V,V~)-l l l  = O,( l ) ,  for  some  fixed kl > 0. Because  max, dkgk, Y( 1 ,  k ;  e (̂,, , &,) = O,( l ) ,  without  loss 
of  generality, we may  assume k z k l .  By the law of  iterated  logarithms  for  martingale  differences, 
Ilk-1/2xf=l q,V; 11 = O,((log T)'") and llk-1'2xf=l (q,qi-Z)l l  =O,((log T)'l2) uniformly  in k ~ [ l ,   T ] .  Thus 
llak 11 = O,(log T )  uniformly  in k e [ k l ,   T ] .  In  addition,  from k-' q,V;= O,( 1 )  uniformly  in k, we have 
k-'@:= O,(log ( T ) )  uniformly  in [k ,  , T ] .  This  proves  Property 2. 11 

The next  property  states that  the value  of  the  pseudo-likelihood ratio, when the  parameters are evaluated 
away  from  zero,  is  arbitrarily  small for large T, assuming  a  positive  fraction  of  observations are used.  We  assume 
that X0+ T 1 / 2 Z  is  positive  definite so that  the likelihood  ratio  is well  defined. 

Proof. The sequential  log-likelihood ratio can be written as 

log Y U ,  k ;  e, z )=91 ,T+92 .T ,  
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and 

Consequently,  concentrating 8 out, we obtain 

1 
k 

l o g 9 ( l ,   k ;  8 , X ) s  log lz+YTl  q;{(z+~~)-~-z}q,)-c;(z@  (z+yT)-')&]. 

We  next  show that  the  term inside the  bracket is positive on S,  when T is large and  the term is  of the  order of 
magnitude  (log T)2 /T .  Because (Z+YT)-' is a symmetric matrix,  there exists an  orthogonal  matrix U such that 
U(Z+ Y T)-' U' = diag (1 /( 1 + Ai) ,  i= 1, . . . , n) where Ai are  the eigenvalues  of ' P T .  Since tr ( A )  = tr (UA U') for 
any  orthogonal  matrix U, we have 

for some U which diagonalizes (Z+YT)-'. We shall  derive a lower bound  for (A.8). Notice 

because 11 U11 = 1. Furthermore, let bT= T1/' log T, then  for  any a > 0, 

for  large T. This is because T1/'llC:= ( qtq; - Z) 11 is uniformly  (in k)  bounded in probability by the  functional 
central limit theorem.  Thus  the  diagonal elements of U( l/k) q,qiU' are  bounded  above by 1 + abT and 
below  by 1 - abT with probability at least 1 - E. Also note the  sign  of l /(  1 + &) - 1 is opposite to the  sign  of 
Ai. Thus we have, from  (A.8) 

1 ,d=, ~ : { ( I + Y T > - ' - Z } ~ , ~ C I = I  ( l  -- :Ai ~ ) ( l  +sign  (Ai)abT), (A.lO) 

with probability at least l - E. Similar to (A.9), we have for any y > 0, 
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when T is  large.  This  is  because  involves  sums  of  martingale  differences and = 0, (1)  for  all  large k, 
see  (A.7).  Now ( ( Z + Y T ) - ’ @ I )  has q repeated  eigenvalues  of 1/(1 + A i )  (i= 1,2, . . . , n) with q=dim (Hk) (same 
as the dimension of the second  identity  matrix). We have  from (A.ll) 

with  probability not less than l - E when T is  large.  Therefore 

(A.  12) 

with  probability not less than 1 - 2 ~ .  On SI,  1 1 2 = 1 1  zlog T. This  implies llYTII Z C T ” ~  log T= cbT for some c>O 
(taking c = ~ ~ X ~ ’ 2 ~ ~  -2 is  enough).  This further implies that there  exists an i such that I Ail 2 CbT for some C >  0, 
because  there  exist cl > O  and c2>0 such that for  any  symmetric  matrix B 

c1 11Bll Smax I&(B)I Sc2 11B11, (A.  13) 
I 

where &(B)  are eigenvalues  of  matrix B. Without  loss of generality,  assume lilllz CbT. Define 

(1 +sign  (x)abT)--qy bT. 1 2 2  

1 + X  

The function f(x)  has two  local  minima and f(x)++m when  either x++m  or  X+-l (we  need 
l +sign (x)abT-qy2b$>0. This is true  for large T since b,+ 0. This  is  also true  for bT= 0(1),  as in  Property 
5  below,  by  choosing  small a and y) .  Furthermore 

and f ( X) satisfies 

f ( x ) 2  iC2b$-  Cab$-qy2b$+o(b$), when 1x1 z C b T .  

Thus  the right-hand  side of (A.12)  is  not  larger than 

- L [  inf f(A.,)+infXy,,f(Ai) (A.15) 
2 IAllhChr 4 

If  we take a and y sufficiently  small,  then  (A.  15)  is  less than 

-kb2K2/8 6 -(log T)26C2/8, for all k z  T6, 

which  is further less than -D log T for any  given D > 0 for large T. Thus we have  shown that  for large T 

(A.16) 

That is,  Property  3  holds on SI . We next  obtain  the  corresponding  result on S 2 .  
We  will  first  derive  upper  bounds for . Y l , T  and .Y2,T separately on S2 and then  combine the  bounds to 

derive another upper  bound  with  respect to k. Using  previous  arguments, we can show that  for any a >O, with 
probability at least 1 - E, the following  holds 

k 
8 

5na2-b$  forall(e,X)ES2. (A.17) 

The first inequality  makes  use  of  (A.lO) and  the second  makes  use  of  (A.14).  Next  consider By Property 
1, for any E > 0, 
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when T is large. Thus we can assume 11 8 11 = log T on S,. Also on S2, llYT 11 5 C log T / f i + O  for some C> 0; 
this  implies (I+ Y T )  > $1 or (I+ Y T ) - l  21 for large T. This further implies that ll(Z+ ‘ P T ) - ’  11 is  bounded on 
S2 .  Thus similar to the  inequality (A.9), we have for any E > O  and any a > O  

This is  because V,@q,  is  a  sequence  of  martingale  differences.  Next, by the law  of  large  numbers,  there  exists  a 
positive  definite  matrix 0, such that Ilk V,V; + R .  Therefore  with  probability not less than l - 3 ~ ,  

for some C> 0 (note  on S,, we assume 11 811 =log T as noted earlier). 
Combining ( A .  17) and ( A .  18) and choosing Q sufficiently  small, we obtain with  probability at least 1 - 4 ~ ,  

log 2 ( 1 ?  k ;  8, Z ) = 9 1 , T + 3 2 , T  

5 -kb2&/ 16 

s-(log T),6C/16, for all k z  T6 and all (8, Z)ES*.  (A.19) 

The  above is less than -D  log T for  any D > 0 when T is  large.  This  together  with (A.  16)  implies  Property 3. 11 

For a  given M >  0, define S,,., = { (8, Z ) ; 11 8 11 2 M or IIZ 11 2 M } .  Then similar  arguments  lead to 

Property 4. For any E > O ,  there exists a M>O such  that 

This property  says that  the value of pseudo-likelihood ratios evaluated  outside  a  bounded  set  is  small,  assuming 
a  positive  fraction  of  observations are involved. The next  property  is  similar to Property 4, but with no positive 
fraction  of  observations  being  required.  This is compensated by moving 8 and Z further away  from  zero ( M +  00 

in the  notation of Property 4). 

Proof. Define bT= T”2 dT. Then by assumption, bT= o(1) if hT Stays  bounded and bT+O if hT+ m. 
Furthermore, hTb$ + h. As in  proving  Property 3, we decompose ST into two  subsets S1 and S*, where SI and 
S2 are defined as in the earlier proof with  log T replaced by dT.  On S1, all arguments  in  Property 3 go  through 
if inequalities (A.9) and ( A . ]  1) still hold  true  when k z  T6 is  replaced  with khAhT and  for  the newly  defined 
bT. However,  these are  the immediate  consequences of the Hajek and Renyi (1955) type of inequalities  because 
by their  inequality 

(A.20) 

for some C>O; the  above is  small if A is  large.  Similarly,  applying the Hajek and Renyi  inequality to 
Ilk ( V , @ q , )  together  with H;’ = O,,( 1 )  uniformly  in  large k, we obtain, for  any E > O  and y > 0 ,  there 
exists an A > 0 such that 

(A.21) 

Where c k  is  given  by (A.7). Using  the  inequalities (A.20) and (A.21) and  the same  arguments as in  Property 3, 
we obtain, with  probability at least 1 - 2 ~ ,  g( 1, k ;  8, Z )  5 -kb$Cz/8  for all k z  AhT and all (8, Z ) E S , ,  which 
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is further  bounded by -Ah&.C2/8 < - AC2h/16 < log E if A is large. The  proof  on S, is  almost  the  same as in 
Property  3 with  only minor changes. Thus we omit  it. 11 

Property 6. Under  the same  hypotheses as in Property 5,  we have for any A > 0, 

sup  sup Y(1,k;  O,Z)=O,,(l), 
kSAhT (0,Z)ESF. 

where S$ is the  complement of ST with ST given in Property 5. 

This  property  asserts  that when evaluated  not  too  far away  from zero  and with the  number of observations 
increasing not  too fast, the likelihood ratio is  simply bounded. 

Proof. It suffices to prove the log-valued  likelihood ratio is bounded in probability.  The log-likelihood 
ratio  consists of  two  expressions Yl,T and Y2,T given  in (AS) and  (A.6), respectively. First consider Y2,T. It 
is enough to prove the first  term  of Y2,T is bounded because the second  term  of Y2,T is negative (the  exponential 
of a negative  value  is  less than 1).  The norm  of  the first  term is bounded by 

Note  that [I(I+ ‘ P T ) - ’  11 is uniformly  bounded on S; because IIYT 11 = O(T-”*dT) < 1 (always  possible  because 
we can redefine dT by multiplying by a small constant).  The second  supremum  is bounded by the  functional 
central limit theorem  for  martingale differences. Combined with the  boundedness of T-”’(dT,/&) (because 
its squared value is bounded by assumption), we see that (A.22) is Op(l). Next  consider Yl,T.  Because 

( I + Y T ) - ’ = I - Y T + Y ~ ( I + Y T ) - ’ ,  

can be written as 

Yl,~=-k/2(1Og I I + ~ T ~  -tr ( v T ) ) +  t tr [ y T x f s l  (qt$-I)]-Xf=~ & v % I + v T ) - ’ q r *  

The last term is nonpositive, so it is enough to consider the first  two  terms on  the right.  The  first  term  is equal 
to 

k 
2 --cy=l (log (1 + & ) - A ) ,  

where again  the  are the  eigenvalues  of ‘ P T .  By Taylor  expansion, it becomes 

k C  - ( L  ’Ai 2 +o( i l ,2 ) )~knmaxi l iZ~knC(IYT11’~CAh,d~/T forallkSAhT, 
2 i 

which  is bounded by assumption. We have  utilized the  relationship between a symmetric matrix  and its eigen- 
values, see (A.13). Next, consider  the  second  term 

which  is bounded in probability. 11 

We are now  in the position to prove  Theorem  2. We only  consider the case  in  which v SO, i.e., ksko .  
The case for U > 0 is similar. The likelihood ratio AT(u, p, X) in  (2.10) is based on  the whole  sample [ 1, T ] .  We 
can  write  it as the product of  likelihood ratios  for  the  three subsamples, [ 1,  k], [k+ 1,  ko 1, and [ko + 1, T ] .  In 
this way, the likelihood ratio will have ( V , @ ] )  rather  than 2, (k) as regressors.  Recall p = (e’, ( S 6  )‘)‘. Let ty = 
8 + S‘S6, which  is the combined  coefficients  of ( V ; @ I )  for  the second  regime. 

The likelihood ratio (2.10)  can  be  rewritten as 

L(k, PO+ T-1’2p, CO + T-”2Z)  
Uko, PO, Zo 

= Y ( l ,   k ;  8, Z )  * Y(k+ 1, Tro ; JTS’S~T+ v, C) Y(Tro+ 1, T ;  v, X), (A.23) 

where Tro=ko with rO€(O, l), and Y(1,j; e ,  * ) is  defined as in (A.l) but using observations from l to j .  For 
simplicity  of notation, we assume Tro is an  integer, that is Tro = [ TrO].  Only the middle  term  of  (A.23)  needs 
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some explanation. For tE[k + 1, Tro] ,  E, (k) = y ,  - Z,  @)’(Po + T-”2/3) = E, - ( V:@Z)S‘SGT- T ’ I 2 (  V:@.I) 
(8+ S ’ S & ) =  E,- T-’I2( V;@Z)(JTS’SS,+ W ) .  By the definition of 9 in (A,I), the segment [k+ 1, Tro] involves 
the  parameter value f lS‘SGT+ W .  

Proof of (2.11). Let k T ( u l ) = [ k o + t r l u ~ 2 ] .  For some cO>O and co<r0 ,  define 

B l , T =  {(k, P ,  C); IIwll 5ml~’&ll, T E O 5 k S T ( U l ) } r  

B2,T= {W, p, C);  IIwII StnIIS’SGTII, OSkSTEO), 

&,T= {W, p, C); IIyII 2itJTIIS’SGTIL O S S k d ~ l  l}. 
On both 5?( 1, k; 8, C )  and Y( Tro + 1, T ;  y,  Z) are O,,( 1) from Property  1, since both use a positive 
fraction of observations. Next consider Y ( k  + 1, Tro ; JTS‘SGT+ v, C ) which  involves Tro - k = -01~7.~ observa- 
tions. Since IInS‘SGT+ v/]>, IIfiS’SGTII - I I v / I I  >, inIIS’SGTII, we apply Property 5 with 8=JTS’SGT+ y ,  
dT= inIIS‘SGTII, hT=trT2, and A = - q  (applied with the reversed data order, i.e. treating Tro as  the first 
observation)  to conclude that Y ( k +  1, Tro ; fiTS‘SG,+ v/, C )  can be arbitrarily small  in probability if -v1 is 
large. 

We now assume that fi(lS’SS,(l >,log T. Then on B2, T ,  .Y( 1, k; 8, E )  is less than T B  for some B> 0 with 
probability  at least 1 - E from  Property  2  and 5?(Tro+ 1, T ;  I, E )  is O,( 1) from Property 1. However, by 
Property 3 with 8 = n S ‘ S S T +  v, Y ( k +  1, Tro ; ~ S ’ S C ~ ~ +  v, C )  (which  involves a positive fraction of the 
data set, and 1) 811 >,$nllS‘SG, 11 ) is  less than TD for any D > 0 with probability  at least 1 - E when T is large. 
Thus  the  product of these three terms can be no larger than E with probability at least 1 - 2~ when T is large. 

Next on &, Property 2 is applicable to both .Y(l, k ;  8, C )  and Y ( k +  1, TTo; JTS‘SGT+ W ,  Z) and 
Property 3 is applicable to Y ( T r o +  1, T ;  v, C).  Thus their product can  be arbitrarily small. 

Proof of (2.12). Let 

D1,7-= {(k, P,  C); IIP VCll LM, IInS’SST+ VI1 52nllS’s6TII, IICII $2JTIlS’S6TlI, kdU1 ) S S T r o } ,  

&T= {W, P, C ) ;  I I ( ~ S ‘ S ~ T +  W )  V C I I  L ~ ~ I I S ’ S & - I I ,  kT(u1 ) S c S T r o } .  

where JIx v y l l z  M means either llxllz M or llyll>, M. 
On apply  Property 6 to Y ( k +  1, Tro;  n S ’ S G T +  W ,  C )  with  reversed data order  and with 

dT=2nllS’SGTII, hT= VG’, and A = -ol to conclude that it  is bounded.  From  Property 1, both P(1 ,  k; 8, Z) 
and 5?( Tro+ 1, T ;  y,  C )  are bounded in probability  (again,  both of  them  use a positive fraction of the observa- 
tions). However one of  them  must  be  small if M is  large. This is  because if l l P l l  > M  we then have either 
11 8 II > M/4  or II y I( > M/4, so that we can apply Property  4  to one of  them ; if 11C11> M, then we can apply 
Property  4  to  both of them. 

The situation on D2,T is similar to that on B3,T. The behaviour of .Y( 1, k; 8, C )  and 9 ( k  + 1, Tro ; 
JTS‘SST+ I, Z )  is controlled by Property 2.  If IInS’SGT+ z2nllS’SGTl( then 11 yll2 11 y +nS’SGTII 
- I I~S’SSTI I  LflllS’SS~ll. Thus on D2,T, 1 1 1  vC1l ~ ~ ~ ~ S ‘ S 6 T ~ ~ .  Consequently, the behaviour of 
2’( TSO + 1, T ;  v, E) is controlled by Property 3. The  product of the three components again is arbitrarily small 
if T is large. The  proof of Theorem 2 is  now complete. 11 

Proof  of  Theorem 3. 

We consider the case  of tr 6 0  (i.e. k s k o ) .  The case  of . u s 0  can be analyzed similarly. Note that for 

t ~ [ k +  l,ko], Z , ( k ) = Z , ( k o ) + ( O ,  [V:@Z]S’)’. This implies that E , ( ” = E , - Z , ( ~ ~ ) ’ T - ’ / ~ ~ - ( V ; ~ Z ) S ’ S ( & ~ +  
T-’/’S).  Thus  the log-valued pseudo-likelihood ratio can be written as: 

tE[l, k] U [ko+ 1, T ] ,  Zr(k)=Z,(ko).  Thus E,(k)=y,-Zr(k)’(Po+ T-”2p)=~r-Zr(ko)‘T-’ /2P.  But for 
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Expression  (A.24)  can be rewritten as, upon Taylor  expansion, 

$ tr (G 'cG' (Y~-  t ~ ) ) + o , ( l ) .  

where YT= T 1 I 2  zfLl ( E ~ E : - C ~ )  and  o,(l) is uniform over C such that 11C11 S M ,  with M an  arbitrary f ixed  
positive number.  The  above converges  in distribution to the first  term of (2.13).  Expression  (A.26)  converging 
in probability to -; P'QP follows  from the law  of  large numbers,  and (A.25)  converging  in distribution to 
p'Q'/'{  follows  from  the central limit theorem  for  martingale differences. For bounded 6 and C, the  limit of 
(A.28) is determined by 

- ; 6 $ ~ S ( p , + ,  V f V ; @ C , ' ) S ' S 6 , = - ~ ~ o S ' S ( v : ~ ~ , + ,  VfV:@G')S's60 .  (A.30) 

Notethat  Sincek=kO+[vuG2], U % ~ Z , + ~  VfV;+lolQl  where Ql=plim  (l/ko) zZl V,V;.Thisimplies 
that (A.30)  converges to -$IvI  S~S 'S (Ql@~ ' )S 'S6 ,=  -$lvlc. For bounded 6 and C, the limit  of  (A.27)  is 
determined by 

E?,+' 6 ; S ' S ( V , @ z ) C , ' , - ' E f = 6 o S ' S ( ~ @ ~ ' ) v T ~ ~ , + ,  (Vf@Ef). (A.31) 

By the  functional  central limit  theorem for  martingale difference, v T z ~ q + l v v f ~ l  ( V f @ E f )  * (Q{'2@G'2)q(u), 
where q ( v )  is a vector  of  independent  Brownian motion processes on (-m, 01, originated at the origin  with 
reverse  time. Thus (A.31)  converges  weakly to SoS'S(Z@C,')(Q:/'@~/2)77(v). This limit has the  same distribu- 
tion  as [&,S'S( Ql @&' )S'SSO]'/' Wl ( v )  = $Wl (U), where Wl ( v )  is a  standard Brownian motion process on 
(-m, 01. This is because b Y has  the same distribution  as ,b% N(0,  1) for  an  arbitrary Y- N(0,  A )  and  an 
arbitrary  constant vector b. Thus 

C?,+, SS'S( Vf@Z)z l&f  [SOS'S(QI~&')S'SSO]'/~W~ ( ~ ) = $ W I  (U). (A.32) 

If v > 0, we will obtain  another Brownian motion process,  say W, ( v ) .  The two  Brownian motion processes  will 
be independent because  they are  the limits  of non-overlapping  martingale differences. Thus we may  define a 
two-sided  Brownian motion process on (-m, m) and  for U E  [ -M,  M ] ,  the underlying partial sums  converge to 

Finally, we show that (A.29)  converges to zero  in probability uniformly  over bounded 6, p, C and U. For 
JzW(v).  

bounded parameters, the  limit  of  (A.29)  is  determined  by 

1 
I l g l , + '  sS's (~fo~)~c , '~f (ko) 'PT- ' /211  5T-'/2(ko-~)11~T11 - I lG' II IlPll ~ Z > , + '  II Vf II IlZf(k0)ll. 

The  right-hand side above is bounded by T - " 2 ( k ~  - k )  11 ST 11 0, ( l )  5 MT-' /2~G2 11 6~ 11 0, (1) = (&%)-'O, (l), 
which  is 0, (1). The  proof of  Theorem 3 is complete. 11 

Proof of Theorem 4. 

The limiting  process is quadratic in p and in C, and  thus is  maximized at p* = Q-'/*{  and C* =P. With 
respect to v2 it  is  maximized at v* = argmin, {$-W@) - clp I /2}. By the continuous  mapping 
theorem,  JT(pr-Po)+Q-'/'{, n(Er-C0)+Y, and v%(k-ko)+argmin,, {,hW(p)-clpl/2}. By a  change 
in  yariable, it can be  shown that argmin, {,h "(p) - cl p I /2} = c-' argmin, { W(s) - I SI /2}. Thus 
cv+(k-k,)+argmin,{ W(s)-(s(/2). But C U ~ = ~ ~ S ' S ( Q ~ @ C ~ ' > S ' S ~ O U ~ = ~ ~ ' S ( Q I @ ~ ' ) S ' S ~ ~ ,  because 
60t)T=6T by definition. We thus proved  (2.14)-(2.16). [I 

Proof of Corollary 4.1. 

(i) An  intercept  shift corresponds  to S= ( s o l )  with S= (1,0, . . . , 0) and S0S'S(Ql @&-')S'SGo =&&-l &. 
Thus, by Theorem  4, 

(A&'&)v$(i-ko) 3 V* 

Now  from A,,vT=AT, we obtain  (i).  Part (ii) follows  from S = Z  and 6 ~ .  Finally, T 1 l 2 ( i T - A T ) =  O,(1) 
by equation (2;14)._Together  with  (2.15), it is easy to verify that [(&ZF'&)- (A;&'AT)](k-ko) 4 0 .  This 
implies (A$'AT)(k-k0)+ V*.  Similarly, part (ii) also holds when estimated ST, Ql , and C;' are used. (1 

Proof of Theorem 5. 

To prove  Theorem 5, it is  sufficient to establish  the six properties  (as in  the proof of  Theorem 2)  for  the sequential 
pseudo-likelihood ratios with I( 1)  regressors.  In the absence  of a  structural change, the  data  generating 



428 REVIEW OF ECONOMIC  STUDIES 

process is 

Y , = A X , + y t + p + + w , + ( , .  

We  may write it as Y, = ( U;@Z)O0 + 5 , .  With Z( 1) and trending regressors, the new parameterization for takes 
the form eo+ D;'8 (i.e. replacing T-'/' by D;',  cf. (A.1)). The pseudo-likelihood ratio is  given  by 

(A.33) 

where &(e)= Y,-(U;@Z)(80+D,'8)=5,-D,'(U;@Z)8. If we define V,=((l/JTX;, (l/T)(t), 1, W;)', then 
&(e)  = e,- T'/'( V;@Z)8. In  this way, the new likelihood ratio (A.33) has the same form as  (A.l), except that 
E, is replaced by 5,. All notations in the  proof of Theorem 2  can be maintained,  as long as the Z( 1) regressors 
are considered as divided by ,/i= and  the linear trend is  divided by T. We shall adopt  this convention here. Note 
that V, is  now a  triangular  array,  and  the usual strong law does not apply to (l/k) c= I V,  V;, as V, contains 
Z( 1) components. We only outline  the major differences. Note that the search of a break is  limited  in the region 
k€[TEo, T(l -c0 ) ]  for some cO>O. 

Property  1 is a  standard result, which  still holds regardless of the presence  of Z(1) regressors or  not. With 
the  restriction  ke[TEo, T( 1 - E ~ ) ] ,  Property  2 becomes 

However, this is implied by Property 1 because k l  Tc0. 
Next consider property 3. The previous proof needs (A.l l), whose proof requires that 

H k =  (l/k) V,?': and  its inverse be O,( 1) for all large k. It is  easy to prove that H k  and H i '  are Op(l) 
uniformly in k such that k z  Tc0. The rest of the  proof is the same as before. Similarly, Property  4 still  holds. 

Next consider Property 5. The previous proofs require inequalities (A.20) and (A.21). Inequality (A.20) 
still holds for  the linear process q,=Z0'&, see  Bai  (1994) for  a  proof. Because k is  only required to be larger 
than AhT (not  a positive fraction of observations),  the inverse matrix H;' is no longer uniformly bounded over 
k  (in  fact,  the first r rows and  the first r columns of H k  converge to zero for k =  AhT as T increases), so the 
proof of  (A.21) must be  modified. First  note that V;(xF=, K.c)-' V,= U;(C:= UiU,!)-'U,. Now 

where qg is the  j-th  component of v,, U,/ is the l-th component of U,, m = dim (Ut). The last inequality follows 
from  the  fact that the projection length (squared) of a vector projected onto a m-dimensional space is no larger 
than  the sum of the projection length of that vector projected onto each of the m one-dimensional spaces 
multiplied by m. Because r and m are fixed, to prove (A.21), it  is  sufficient to prove, that  for each j and l, 

We shall use the following result: P(g( Y, X) > c )  = EP(g( Y, X) > c ( X ) .  For each j ,  qa is a linear process. To 
conserve space, we only give proofs here for q, being an i.i.d  sequence. The general case can be proved using 
the  argument in  Bai (1994). By the inequality of  Hajek and Renyi (1959, the  conditional probability, conditional 
on the Us, is bounded by 

where = E & .  Thus  the unconditional probability satisfies 

(A.34) 
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The expected  value  involved  is  uniformly bounded in k by Assumptions 3.3 and 3.4. It is also bounded for 
U,,= t ,  the  trending regressor. Thus  the left-hand side of (A.34) is bounded by, for some M, M'< m, 

l 1 
k2 - b$AhT 

My-'bT2 Ahz -I M'y-' - < E, for large A ,  

because b$hT has a positive limit by assumption. This proves (A.21). The rest  of proof is the same. 

V,= ( T-'/2X:,  T-'t,  1, W;) ' ,  we see that (A.22) is 0, (1). 11 
Next, consider Property 6. The only  place that involves Vr is equation (A.22). Using the fact that 

The convergence  of (A.35) is already studied. The weak  convergence  of (A.36) and (A.37) is standard because 
they do not depend on k but ko (cointegration regression  with  fixed interactive dummy variables). Their limit 
is a quadratic form in B as specified  in the Theorem. The matrix Q is random (it is  easy to derive its concrete 
expression, but we omit the details). For bounded 6 and X, the limit  of (A.38) is determined by 

z z k + l  s;s's(vr@I)%'{,=s;s's(I@X,') c k + 1  (UrBgr) 

= S & Y ' S ( I @ ~ & ' ) U T ~ ~ ~ + ~  ((T-'/'X;,  T-'t, 1, W ; ) ' @ { r ) .  (A.41) 

The last equality follows from the assumption on cST and U,= (Xr, t,  1, W;) ' .  Now consider the limiting process 
o f ~ T x ? k + I  (T-'/2Xr@{r) 

U T C P _ ~ + ~  (T-"2X,@{r)=T-"2Xk,@Urxzk+l {r-T-'/2UTEzk+I ( X k o - X r ) @ g r -  (A.42) 

Now, T-'l2Xb=  T-'l2 1:' ErAfi&(1)Rf/22, where 2 is N(0,  I ) ,  ro=ko/T,  a=Eere: ; ~ r c - ~ + ~ ~ ~ ~ z ,  5 1  - C( l)R~"q(u), where q ( .  ) is a vector of independent standard Brownian motion processes on (-m, 01, starting 
at  the origin with  reverse  time. The process q ( o )  is independent of Z. The second  term on the r.h.s. of (A.42) 
is op(l). Thus (A.42) converges  weakly to ,/&,D(1)R)/2Z@C(1)RL'2q(~). Next 

We have  used the fact that,  for bounded U,  UT^>^+^ T-'(ko-t)<t=o,(l) .  Finally, 

 UT^>,+, ( w r @ t r )  * [E,"-_, E ( w r w ; - h ) @   ( E ~ r ~ : - h ) l ' / ' W * ( U ) ,  

where W*(U) is a vector of independent standard Brownian motion processes  defined on (-00, 01, which  is also 
independent of q(o) .  Combining these results together with (A.411, we have 

xZk+' 6Tsrs(urBOG'{r 

(A.43) 

Using the fact that b' Y has the same distribution  as @@ N(0,  1) for Y- N(0,  A )  and b an arbitrary  random 
vector independent of Y, we see that  the right-hand side of (A.43) has the same distribution 8s 
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{ShS'SHIS'SSo } ' I2  W(v) ,  where H1 is  given  in Theorem 7  and W(u) is a scalar standard Brownian motion on 
(-CO, 01. Thus 

zzk+l SkS'S(U,@Z)Zi'& {ShS'SHlS'SSo}1'2W(o)=&W(v). 

Next, consider (A.39). For bounded 6 and E, the limiting process of (A.39) is determined by 

- 4 p=k+ I SkS'S( U,@Z)E;l( U:@z)s'sST= - & 5 ; . S ' S ( ~ ~ , + ,  u,u:@E;')s's6T. 
Using similar arguments  as above, the limiting process is  shown to be - f I V I  6hS'SH2S'SSo = - f 101  c2 ,  where H2 
is  defined  in Theorem 6.  

Expression (A.40) can be shown to be o,,(l). Combining these results, we obtain  the limiting process of 
the log-likelihood ratio. Finally note  that c l ,  c2 and W(o) are determined by O(vi2)  number of observations 
whereas K ,  Q and Y are determined by the  entire set of observations. The  latter will not be changed if  we delete 
O(uF2)  observations that determine c l ,  c2, and W(u). This gives  rise to the  asymptotic independence of 
(c1, c2, W(u)) and (K, Q, Y ). The independence of (c1, c2)  and W(v) follows from the independence of 5, and 
the regressors. 11 

Proof of  Theorem 7. 

The limiting process is  maximized for p at Q K ,  for E at Y, and for v at a!gmax, {A W(s) - Is1 c2 /2). From 
the repa!ameterization and  the  continuous mapping theorem we have &(B - P O )  4 Q-IK, T 1 ' 2 ( ~ - & )  4 Y ,  
and U$ ( k  - ko ) 4 argmax, { & W(s) - I sl c2 /2}. By a change in variable, we have argmax, { W(s) - I SI 4 2 )  = 
argmax, { W(s) - (c2 /&)Is1 /2} = (c1 /c:) argmax, { W(r) - I rJ /2}. This implies that 

(c : /c l )v$($-ko)  - argmax, { W(s)-ls1/2}. 

The last part of Theorem 7 follows from the definition of cl and c2 .  11 

Proof  of  Corollary 7.1. 

This  corresponds to a special S such that S =  ( & @ I ) ,  with SI U,= 1, which  is the constant regressor. For this 
S, we have SSo = po,  and SH2S' = 1 @E,' =E;'. Thus ShS'SH2S'SSo = p&'po. Similarly, 
S ~ S ' S H I S ' S S o = p ~ ~ ~ l C ( l ) ~ , C ( l ) ' ~ - l p o .  By Theorem 7 

By definition, p T = p O v T .  Replacing povT by pT yields  (3.6). 11 

Proof  of Corollary 7.2. 

The  proof is similar to that of Corollary 7.1. The S has the form S= (S1 @Z) with SI U, = t .  In this case SH2S' = 
= T$;' . Similar to  Corollary 7.1, 

By definition, youT= TYT. Replacing y0vT by TYT, and replacing ro by k o / T  yields  (3.7). 11 

Proof of Corollary 7.3. 

This  corresponds to another special S such that S =  (S1@Z) with SI U, =X,. This implies that SSo=&. In 
addition, SH2S'= G@Zj1, where G =  700(1)n2/222'nel/2D(1)', which  is the upper left  block  of the matrix U) 
defined  in Theorem 7. Similarly, SHIS'= G@&'C( l)n,C(l)'E;'. Thus Theorem 7 implies that 

By definition, a. vT= rTaT.  In addition, G is the limit  of T1XkoXk0.  Thus, replacing uT by JTaT and replacing 
G by T-'XkoXko gives (3.8). * 11 
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